http://blogs.oracle.com/darcy/entry/how to cross compile for

® Oracle

e Blogs Home
e Products & Services

e Downloads

e Support
e Partners

e Communities
e About
e Login
Oracle Blog
Joseph D. Darcy's Oracle Weblog

Joseph D. Darcy's Oracle Weblog
« Coming in 2008: Tips... | Main | Open]DK 6: Sources... »
How to cross-compile for older platform versions

By darcy on Feb 25, 2008

Besides compiling source code into class files suitable for the current JDK,
javac can also be used as a cross-compiler to produce class files runnable on
JDKs implementing an earlier version of the Java SE specification. However,
just using

javacl.6 -source 1.4 Foo.java

is in general not sufficient to ensure that the resulting class file(s) will be
usable in a 1.4 JDK. While this will work for many programs, benign evolution
of the libraries and platform can cause failures if the program is run on the
older JDK. As described in the cross-compilation example in the javac man
page, the bootclasspath needs to be set to an appropriate library version too.

Targeting the right version of a library is important because libraries are not
forward-compatible. That is, older versions of a library don't have facilities to
handle calls to methods added in future versions of the library.

One fundamental job of javac is to translate symbolic name-based method and
constructor calls in the source code to signature-based calls in the class file.
Consider two versions of a library:

// Original
public class Library {

public void foo(double d) {System.out.prinln("double foo0");}
}

// Evolved

public class Library {
public void foo(double d) {System.out.prinln("double foo0");}

1of6 07-01-12 21:07

http://blogs.oracle.com/darcy/entry/how to cross compile for

public void foo(int i) {System.out.prinln("int foo");}

}
and a client program

public class Client {
public static void main(String... args) {
(new Library()).foo(1l);
}
}

When processing a call site like ".foo(1)", javac goes through a nontrivial
method resolution procedure. When client is compiled against the original
library, the method call resolves to foo taking a double parameter,
Library.foo(double), which is the only choice in this case. This in turn is
represented in the class file as "invoke the method in class Library named foo
with one double parameter that returns void." However, after the foo method
is overloaded, the call ".foo(1)" will get resolved as Library.foo(int) since it is
more specific than the other applicable choice and the class file will instead
“invoke the method in class Library named foo with one int parameter that
returns void" Therefore, regardless of the -source or -target options given to
javac, the class file of client compiled against the new library will reference a
method specific to the new version of the library. When such a class file is
then run against the old version of the library, a NoSuchMethodError will result
since Library.foo(int) is not present.

Library writers should be cautious about overloading in general and
especially wary of adding new overloadings. Besides this cross-compilation
wrinkle, which has occurred in practice, new overloadings can alter the
operational semantics of existing source code, as seen in this case where the
printed message is changed.

The esince tags that appear in the platform javadoc are not used by javac to
constrain the set of methods considered available when setting -target. These
tags are only informative and are not represented in the compiled class files
on the implicit or explicit bootclasspath. While it would be technically
possible to store this information in the class files, for example as
annotations or class file attributes, method overloading is already very
complicated and this extra complexity would increase fragility of the
compiler for little benefit.

Additionally, even when the bootclasspath and -source/-target are all set
appropriately for cross-compilation, compiler-internal contracts, such as how
anonymous inner classes are compiled, may differ between, say, javac in JDK
1.4.2 and javac in JDK 6 running with the -target 1.4 option.

The most reliably way to produce class files that will work on a particular
JDK and later is to compile the source files using the oldest JDK of interest.
Barring that, the bootclasspath must be set for robust cross-compilation to
an older JDK.

Category: Java

20f6 07-01-12 21:07

http://blogs.oracle.com/darcy/entry/how to cross compile for

Tags: java
Permanent link to this entry

« Coming in 2008: Tips... | Main | Open]DK 6: Sources... »
Comments:

[remember the same issue when StringBuffer.append(StringBuffer) was
introduced in 1.4.

"Method overloading is already very complicated",

i agree, the introduction of varargs and autoboxing complexify the algorithm
but

introduce @Since at runtime will only reduce the set of applicable methods
(section 15.12.2.1 of the JLS3), it seems straightforward.

Rémi
Posted by Rémi Forax on February 28, 2008 at 06:45 AM PST #
Rémi,

Yes, I also closed bug 6578661 "StringBuffer.insert() compiles with
CharSequence with 1.4 target." Many seemingly simple compilation changes
can be surprising involved. For example, I'd anticipate complications from
things like adding an interface to the platform in release N and declaring an
existing class implements the interface in release (N+1) when the methods
already exist; if compiling to release N, the class shouldn't implement the
interface, etc. Another complicating factor is that the @since tags have been
known to be incorrect from time to time (6367207 "Ensure correctness of all
@since tags added since 1.2").

-Joe
Posted by Joe Darcy on February 28, 2008 at 04:28 PM PST #

Post a Comment:
Comments are closed for this entry.

About

darcy

Search

Enter search term:

Search only this blog

3of6 07-01-12 21:07

http://blogs.oracle.com/darcy/entry/how to cross compile for

Recent Posts

e An apt ending draws nigh

e Project Coin at Devoxx 2011

e Project Coin at JavaOne 2011

e JDK 7 Changesets Over Time

e Coming soon: JavaOne 2011

e [DK 7: Small Library Treats

e A Pictorial View of a JSR Progressing through the JCP
e OSCON: The State of JDK Open]DK

e OSCON: JDK 7 in a Nutshell

e Project Coin: JSR 334 Finale!

Top Tags

e annotationprocessing
e devoxx

e €380

e fosdem

e fridayfun

e java

e javaone

e jick

e idk

e idk7

e jdk8

e ipr09

e jsr334

e jvimmlang

e numerics

e openjdk

e openjdk6

e opensource
e 0scon

e personal

e projectcoin
e projectlambda

Categories

e Annotation Processin
e General

e Java

e JavaOne

e Numerics

e Open]DK

Archives

4 0f6 07-01-12 21:07

http://blogs.oracle.com/darcy/entry/how to cross compile for

50f6

«January 2012

Sun Mon Tue Wed Thu Fri Sat

1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

Today
News

No bookmarks in folder

Blogroll

Get Java

Menu

e Blogs Home

e Weblog
e L.ogin

Feeds

RSS

o All

e /Annotation Processing
e /General

e /Java

e /JavaOne

e /Numerics

e /Open]DK

e Comments

Atom

o All

e /Annotation Processing
e /General

e /Java

e /JavaOne

e /Numerics

e /Open]DK

e Comments

07-01-12 21:07

http://blogs.oracle.com/darcy/entry/how to cross compile for

The views expressed on this blog are those of the author and do not
necessarily reflect the views of Oracle. Terms of Use | Your Privacy Rights

6 of 6 07-01-12 21:07

