

jpylyzer: validator and properties
extractor for JPEG 2000 Part 1 (JP2)

User Manual

jpylyzer version: 1.9

Johan van der Knijff
KB/ National Library of the Netherlands
Open Planets Foundation

This work was partially supported by the SCAPE Project. The SCAPE project is co-
funded by the European Union under FP7 ICT-2009.4.1 (Grant Agreement number
270137).

Disclaimer
Both the program code and this manual have been carefully inspected before printing. However,
no warranties, either expressed or implied, are made concerning the accuracy, completeness,
reliability, usability, performance, or fitness for any particular purpose of the information
contained in this manual, to the software described in this manual, and to other material supplied
in connection therewith. The material is provided "as is". The entire risk as to its quality and
performance is with the user.

Table of Contents

1 Introduction .. 1

1.1 About jpylyzer ..1

1.2 Validation: scope and restrictions...1

‘Valid’ means ‘probably valid’ ... 1

No check on compressed bitstreams... 1

Recommendations for use in quality assurance workflows .. 2

Note on ICC profile support .. 2

1.3 Outline of this User Manual..2

1.4 Funding ..2

1.5 License ...2

2 Installation and set-up .. 3

2.1 Obtaining the software...3

2.2 Installation of Python script (Linux/Unix, Windows, Mac OS X)3

Testing the installation ... 3

Troubleshooting ... 4

2.3 Installation of Windows binaries (Windows only)4

Testing the installation ... 4

Running jpylyzer without typing the full path .. 5

2.4 Installation of Debian packages (Ubuntu/Linux) ...5

3 Using jpylyzer .. 7

3.1 Overview ..7

3.2 Command-line usage ..7

Synopsis ... 7

Output redirection ... 8

Creating well-formed XML with multiple images ... 8

User warnings .. 8

3.3 Using jpylyzer as a Python module ...9

4 Structure of a JP2 file .. 11

4.1 Scope of this chapter ..11

4.2 General format structure ...11

ii

4.3 General structure of a box ..12

4.4 Defined boxes in JP2...12

5 Output format .. 15

5.1 Overview ..15

5.2 toolInfo element ..16

5.3 fileInfo element ..16

5.4 isValidJP2 element ...16

5.5 tests element ...16

Default and verbose reporting of test results .. 17

5.6 properties element ..17

6 JP2: box by box ... 19

6.1 About the properties and tests trees ..19

Naming of properties ... 19

6.2 JPEG 2000 Signature box ..19

Element name .. 19

Reported properties ... 19

Tests .. 20

6.3 File Type box ..20

Element name .. 20

Reported properties ... 20

Tests .. 20

6.4 JP2 Header box (superbox) ...20

Element name .. 20

Reported properties ... 20

Tests .. 21

6.5 Image Header box (child of JP2 Header box)...21

Element name .. 21

Reported properties ... 22

Tests .. 22

6.6 Bits Per Component box (child of JP2 Header box)22

Element name .. 22

Reported properties ... 22

Tests .. 23

iii

6.7 Colour Specification box (child of JP2 Header box)23

Element name .. 23

Reported properties ... 23

Reported properties of ICC profiles ... 23

Tests .. 25

6.8 Palette box (child of JP2 Header box) ...25

Element name .. 25

Reported properties ... 25

Tests .. 26

6.9 Component Mapping box (child of JP2 Header box)26

Element name .. 26

Reported properties ... 26

Tests .. 26

6.10 Channel Definition box (child of JP2 Header box)26

Element name .. 26

Reported properties ... 27

Tests .. 27

6.11 Resolution box (child of JP2 Header box, superbox)27

Element name .. 27

Reported properties ... 27

Tests .. 27

6.12 Capture Resolution box (child of Resolution box)28

Element name .. 28

Reported properties ... 28

Tests .. 28

6.13 Default Display Resolution box (child of Resolution box)29

Element name .. 29

Reported properties ... 29

Tests .. 30

6.14 Contiguous Codestream box...30

6.15 Intellectual Property box ..30

6.16 XML box ...30

Element name .. 30

Reported properties ... 30

iv

Tests .. 30

6.17 UUID box ..31

Element name .. 31

Reported properties ... 31

Tests .. 31

6.18 UUID Info box (superbox) ...32

Element name .. 32

Reported properties ... 32

Tests .. 32

6.19 UUID List box (child of UUID Info box) ..32

Element name .. 32

Reported properties ... 32

Tests .. 32

6.20 Data Entry URL box (child of UUID Info box) ...32

Element name .. 33

Reported properties ... 33

Tests .. 33

6.21 Unknown box ...33

Element name .. 33

Reported properties ... 33

6.22 Top-level tests and properties ..33

Element name .. 33

Reported properties ... 34

Tests .. 35

7 Contiguous Codestream box ... 37

7.1 General codestream structure ..37

Markers and marker segments ... 37

General structure of the codestream .. 37

7.2 Limitations of codestream validation..38

Main codestream header ... 38

Tile parts .. 39

Bit streams ... 40

Detection of incomplete or truncated codestreams .. 40

Current limitations of comment extraction ... 40

v

7.3 Structure of reported output ..40

7.4 Contiguous Codestream box...41

Element name .. 41

Reported properties ... 41

Tests .. 42

7.5 Image and tile size (SIZ) marker segment (child of Contiguous Codestream
box) 43

Element name .. 43

Reported properties ... 43

Tests .. 44

7.6 Coding style default (COD) marker segment ...45

Element name .. 45

Reported properties ... 45

Tests .. 46

7.7 Quantization default (QCD) marker segment ..47

Element name .. 47

Reported properties ... 47

Tests .. 47

7.8 Comment (COM) marker segment..48

Element name .. 48

Reported properties ... 48

Tests .. 48

Note on support of Latin encoding.. 48

7.9 Tile part (child of Contiguous Codestream box) ..49

Element name .. 49

Reported properties ... 49

Tests .. 49

7.10 Start of tile part (SOT) marker segment (child of tile part)49

Element name .. 49

Reported properties ... 49

Tests .. 50

7.11 Coding style component (COC) marker segment50

Element name .. 50

Reported properties ... 50

Tests .. 50

vi

7.12 Region-of-interest (RGN) marker segment ...50

Element name .. 50

Reported properties ... 50

Tests .. 50

7.13 Quantization component (QCC) marker segment51

Element name .. 51

Reported properties ... 51

Tests .. 51

7.14 Progression order change (POC) marker segment51

Element name .. 51

Reported properties ... 51

Tests .. 51

7.15 Packet length, main header (PLM) marker segment51

Element name .. 51

Reported properties ... 52

Tests .. 52

7.16 Packed packet headers, main header (PPM) marker segment52

Element name .. 52

Reported properties ... 52

Tests .. 52

7.17 Tile-part lengths (TLM) marker segment ...52

Element name .. 52

Reported properties ... 52

Tests .. 52

7.18 Component registration (CRG) marker segment53

Element name .. 53

Reported properties ... 53

Tests .. 53

7.19 Packet length, tile-part header (PLT) marker segment53

Element name .. 53

Reported properties ... 53

Tests .. 53

7.20 Packed packet headers, tile-part header (PPT) marker segment53

Element name .. 53

Reported properties ... 54

vii

Tests .. 54

8 References .. 55

viii

1

1 Introduction

1.1 About jpylyzer

This User Manual documents jpylyzer, a validator and feature extractor for JP2 images. JP2 is the
still image format that is defined by JPEG 2000 Part 1 (ISO/IEC 15444-1). Jpylyzer was specifically
created to answer the following questions that you might have about any JP2 file:

1. Is this really a JP2 and does it really conform to the format's specifications (validation)?

2. What are the technical characteristics of this image (feature extraction)?

1.2 Validation: scope and restrictions

Since the word ‘validation’ means different things to different people, a few words about the
overall scope of jpylyzer. First of all, it is important to stress that jpylyzer is not a ‘one stop
solution’ that will tell you that an image is 100% perfect. What jpylyzer does is this: based on the
JP2 format specification (ISO/IEC 15444-1), it parses a file. It then subjects the file’s contents to a
large number of tests, each of which is based on the requirements and restrictions that are
defined by the standard. If a file fails one or more tests, this implies that it does not conform to
the standard, and is no valid JP2. Importantly, this presumes that jpylyzer’s tests accurately reflect
the format specification, without producing false positives.

‘Valid’ means ‘probably valid’

If a file passes all tests, this is an indication that it is probably valid JP2. This (intentionally) implies
a certain degree of remaining uncertainty, which is related to the following.

First of all, jpylyzer (or any other format validator for that matter) ‘validates’ a file by trying to
prove that it does not conform to the standard. It cannot prove that that a file does conform to
the standard.

Related to this, even though jpylyzer’s validation process is very comprehensive, it is not
complete. For instance, the validation of JPEG 2000 codestreams at this moment is still somewhat
limited. Section 7.2 discusses these limitations in detail. Some of these limitations (e.g. optional
codestream segment markers that are only minimally supported at this stage) may be taken away
in upcoming versions of the tool.

No check on compressed bitstreams

One important limitation that most certainly will not be addressed in any upcoming versions is
that jpylyzer does not analyse the data in the compressed bitstream segments. Doing so would
involve decoding the whole image, and this is completely out of jpylyzer’s scope. As a result, it is
possible that a JP2 that passes each of jpylyzer’s tests will nevertheless fail to render correctly in a
viewer application.

2

Recommendations for use in quality assurance workflows

Because of the foregoing, a thorough JP2 quality assurance workflow should not rely on jpylyzer
(or any other format validator) alone, but it should include other tests as well. Some obvious
examples are:

• A rendering test that checks if a file renders at all

• Format migration workflows (e.g. TIFF to JP2) should ideally also include some
comparison between source and destination images (e.g. a pixel-wise comparison)

Conversely, an image that successfully passes a rendering test or pixel-wise comparison may still
contain problematic features (e.g. incorrect colour space information), so validation, rendering
tests and pixel-wise comparisons are really complementary to each other.

Note on ICC profile support

At the time of writing an amendment is in preparation that will extend the support for embedded
ICC profiles in JP2. Jpylyzer is already anticipating these changes, and as a result there is a minor
discrepancy here between jpylyzer and the current standard text.

1.3 Outline of this User Manual

Chapter 2 describes the installation process of jpylyzer for Windows and Unix-based systems.
Chapter 3 explains the usage of jpylyzer as a command-line tool, or as an importable Python
module. Chapter 4 gives a brief overview of the structure of JP2 and its ‘box’ structure. Jpylyzer’s
output format is explained in chapter 5. The final chapters give a detailed description of the tests
that jpylyzer performs for validation, and its reported properties. Chapter 6 does this for all
‘boxes’, except for the ‘Contiguous Codestream’ box, which is given a chapter (7) of its own.

1.4 Funding

The development of jpylyzer was funded by the EU FP 7 project SCAPE (SCAlabable Preservation
Environments). More information about this project can be found here:

http://www.scape-project.eu/

1.5 License

Jpylyzer is free software: you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version. This program is distributed in the hope that it
will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details. You should have received a copy of the GNU Lesser General Public
License along with this program. If not, see <http://www.gnu.org/licenses/>.

On Debian systems, the complete text of the GNU Lesser General Public License version 3 can be
found in "/usr/share/common-licenses/LGPL-3".

http://www.scape-project.eu/
http://www.gnu.org/licenses/

3

2 Installation and set-up
2.1 Obtaining the software

To obtain the latest version of the software please use the download links at the jpylyzer page of
the Open Planets Foundation website:

http://www.openplanetsfoundation.org/software/jpylyzer

You have three options:

1. Use the Python source code. This allows you to run the software as a Python script on
most popular platforms (Windows, Linux, Mac, etc.). However, this requires that you
have a recent version of the Python interpreter available on your system.

2. Alternatively, for Windows users there is also a set of stand-alone binaries1. These allow
you to run jpylyzer as an executable Windows application, without any need for installing
Python. This option is particularly useful for Windows users who cannot (or don’t want
to) install software on their system.

3. For Linux users Debian packages are available. These allow you to run jpylyzer without
any need for installing Python.

These options are described in the following sections.

2.2 Installation of Python script (Linux/Unix, Windows, Mac OS X)

First, download the source files using one of the ‘Source Code Downloads’ links on the OPF
jpylyzer page.

Then unzip the contents of the ZIP file to an empty directory. If you are working on a Linux/Unix
based system you may need to make the scripts executable, and convert any line breaks to Unix-
style ones. To do this, use the following commands:

chmod 755 *.py
dos2unix *.py

In order to run the script you will need either Python 2.7, or Python 3.2 (or more recent)2. Python
can be downloaded from:

http://python.org/

Testing the installation

To test your installation, open a console window (or command prompt) and type:

1 The jpylyzer binaries were created using the PyInstaller package: http://www.pyinstaller.org/
2 Note that jpylyzer will not work under Python versions 3.0-3.1!

http://www.openplanetsfoundation.org/software/jpylyzer
http://python.org/
http://www.pyinstaller.org/

4

%jpylyzerPath%/jpylyzer.py -h

In the above command, replace %jpylyzerPath% with the full path to the jpylyzer installation
directory (i.e. the directory that contains ‘jpylyzer.py’ and its associated files). For example, if you
extracted the files to directory ‘/home/jpylyzer’, the command would become:

/home/jpylyzer/jpylyzer.py -h

Executing this command should result in the following screen output:

usage: jpylyzer.py [-h] [--verbose] [--wrapper] [--version] ...

JP2 image validator and properties extractor

positional arguments:
 jp2In input JP2 image(s) or folder(s), prefix wildcard
 (*) with backslash (\) in Linux

optional arguments:
 -h, --help show this help message and exit
 --verbose report test results in verbose format
 --wrapper, -w wraps the output for individual image(s) in
 'results' XML element
 --version show program's version number and exit

Troubleshooting

If the above test didn’t run successfully, first verify the following possible causes:

• On Windows: check if files with a .py extension are associated with the Python
interpreter. If you have multiple versions of Python on your system, make sure that the
association does not link to a Python version that is incompatible with jpylyzer (e.g.
Python 2.6 or older, or Python 3.0/3.1).

• On Unix/Linux: by default, jpylyzer uses the command interpreter that is defined by the
‘python’ environment variable. If this is linked to some (very) old version of Python,
things may not work as expected. If you run into problems because of this, update the
command interpreter references in jpylyzer.py, i.e. change:

#! /usr/bin/env python

into:

#! /usr/bin/env python27

2.3 Installation of Windows binaries (Windows only)

Download the binary using the ‘Win 32 binaries’ link on the OPF jpylyzer page. Unzip the contents
of this file to an empty folder on your PC. Jpylyzer should now be ready for use.

Testing the installation

To test your installation, open a Command Prompt (‘DOS prompt’) and type:

%jpylyzerPath%\jpylyzer -h

5

In the above command, replace %jpylyzerPath% with the full path to the jpylyzer installation
directory (i.e. the directory that contains ‘jpylyzer.exe’ and its associated files). For example, if you
extracted the files to directory ‘c:\tools\jpylyzer’, the command would become:

c:\tools\jpylyzer\jpylyzer -h

Executing this command should result in the following screen output:

usage: jpylyzer.py [-h] [--verbose] [--wrapper] [--version] ...

JP2 image validator and properties extractor

positional arguments:
 jp2In input JP2 image(s) or folder(s), prefix wildcard
 (*) with backslash (\) in Linux

optional arguments:
 -h, --help show this help message and exit
 --verbose report test results in verbose format
 --wrapper, -w wraps the output for individual image(s) in
 'results' XML element
 --version show program's version number and exit

Running jpylyzer without typing the full path

Optionally, you may also want to add the full path of the jpylyzer installation directory to the
Windows ’Path’ environment variable. Doing so allows you to run jpylyzer from any directory on
your PC without having to type the full path. In Windows XP you can do this by selecting ‘settings’
from the ‘Start’ menu; then go to ‘control panel’/’system’ and go to the ‘advanced’ tab. Click on
the ‘environment variables’ button. Finally, locate the ‘Path’ variable in the ‘system variables’
window, click on ‘Edit’ and add the full jpylyzer path (this requires local Administrator privileges).
The settings take effect on any newly opened command prompt.

2.4 Installation of Debian packages (Ubuntu/Linux)

For a number of Linux architectures Debian packages of jpylyzer exist. To install, simply download
the .deb file, double-click on it and select Install Package. Alternatively you can also do this in the
command terminal by typing:

sudo dpkg -i jpylyzer_1.9.0_i386.deb

In both cases you need to have administrative privileges.

6

7

3 Using jpylyzer
3.1 Overview

This chapter describes the general use of jpylyzer. The first sections cover the use of jpylyzer as a
command-line tool and as an importable Python module.

3.2 Command-line usage

This section explains jpylyzer’s general command-line interface. For the sake of brevity, all
command-line examples assume the use of the Python script; moreover, full paths are omitted.
This means that, depending on your system and settings, you may have to substitute each
occurrence of ‘jpylyzer.py’ with its full path, the corresponding Windows binary, or a combination
of both. The following examples illustrate this:

This User Manual jpylyzer.py
Substitution example Linux /home/jpylyzer/jpylyzer.py
Substitution example Windows binaries c:\tools\jpylyzer\jpylyzer

Furthermore, command line arguments that are given between square brackets (example: [-h])
are optional.

Synopsis

Jpylyzer can be invoked using the following command-line arguments:

jpylyzer.py [-h] [--verbose] [--wrapper] [--version] ...

With:

… : input JP2 image(s)
[-h, --help] : show help message and exit
[--verbose] : report test results in verbose format
[--wrapper, -w] : wraps the output for individual image(s) in

'results' XML element
[-v, --version] : show program's version number and exit

Note that the input can either be a single image, a space-separated sequence of images, a
pathname expression that includes multiple images, or any combination of the above. For
example, the following command will process one single image:

jpylyzer.py rubbish.jp2

The next example shows how to process all files with a ‘jp2’ extension in the current directory:

jpylyzer.py *.jp2

8

Note that on Unix/Linux based systems pathname expressions may not work properly unless you
wrap them in quotation marks:

jpylyzer.py “*.jp2”

Output redirection

All output (except warning and system error messages) is directed to the standard output device
(stdout). By default this is the console screen. Use your platform’s standard output redirection
operators to redirect output to a file. The most common situation will be to redirect the output of
one invocation of jpylyzer to an XML file, which can be done with the ‘>’ operator (both under
Windows and Linux):

jpylyzer.py jp2In > outputFile

E.g. the following command will run jpylyzer on image ‘rubbish.jp2’ and redirects the output to file
‘rubbish.xml’:

jpylyzer.py rubbish.jp2 > rubbish.xml

The format of the XML output is described in Chapter 5.

Creating well-formed XML with multiple images

By default, jpylyzer creates a separate XML tree for each analysed image, without any
overarching hierarchy. If you use a pathname expression to process multiple images and redirect
the output to a file, the resulting file will not be a well-formed XML document. An example:

jpylyzer.py rubbish.jp2 garbage.jp2 > rubbish.xml

In this case, the output for these 2 images is redirected to ‘rubbish.xml’, but the file will be a
succession of two XML trees, which by itself is not well-formed XML. Use the --wrapper option if
you want to create well-formed XML instead:

jpylyzer.py --wrapper rubbish.jp2 garbage.jp2 > rubbish.xml

In the above case the XML trees of the individual images are wrapped inside a ‘results’ element.

User warnings

Under the following conditions jpylyzer will print a user warning to the standard error device
(typically the console screen):

1. If there are no input images to check (typically because the value of jp2In refers to a non-
existent file), the following warning message is shown:

User warning: no images to check!

2. In some cases you will see the following warning message:

User warning: ignoring 'boxName' (validator function not yet implemented)

The reason for this: a JP2 file is made up of units that are called ‘boxes’. This is explained
in more detail in Chapter 4. Each ‘box’ has its own dedicated validator function. At this
stage validator functions are still missing for a small number of (optional) boxes. Jpylyzer

9

will display the above warning message if it encounters a (yet) unsupported box. Any
unsupported boxes are simply ignored, and the remainder of the file will be analyzed
(and validated) normally.

3. Finally, you may occasionally see this warning message:

User warning: ignoring unknown box

This happens if jpylyzer encounters a box that is not defined by JPEG 2000 Part 1. It
should be noted that, to a large extent, JPEG 2000 Part 1 permits the presence of boxes
that are defined outside the standard. Again, jpylyzer will simply ignore these and
process all other boxes normally.

3.3 Using jpylyzer as a Python module

Instead of using jpylyzer from the command-line, you can also import it as a module in your own
Python programs. To do so, put all the jpylyzer source files in the same directory as your own
code. Then import jpylyzer into your code by adding:

import jpylyzer

Subsequently you can call any function that is defined in jpylyzer.py. In practice you will most
likely only need the checkOneFile function, which can be called in the following way:

jpylyzer.checkOneFile(file)

Here, file is the path to a file object. The function returns an element object that can either be
used directly, or converted to XML using the ElementTree module3. The structure of the element
object follows the XML output that described in Chapter 5.

Alternatively, you may only want to import the checkOneFile function, in which case the import
statement becomes:

from jpylyzer import checkOneFile

This will allow you to call the function as follows:

checkOneFile(file)

3 Note that jpylyzer versions 1.8 and earlier returned a formatted XML string instead of an
element object!

10

11

4 Structure of a JP2 file
4.1 Scope of this chapter

This chapter gives a brief overview of the JP2 file format. A basic understanding of the general
structure of JP2 is helpful for appreciating how jpylyzer performs its validation. It will also make it
easier to understand jpylyzer‘s extracted properties, as these are reported as a hierarchical tree
that corresponds to the internal structure of JP2.

For an exhaustive description of every detail of the format you are advised to consult Annex I (‘JP2
file format syntax’) and Annex A (‘Codestream syntax’) of ISO/IEC 15444-1.

4.2 General format structure

At the highest level, a JP2 file is made up of a collection of boxes. A box can be thought of as the
fundamental building block of the format. Some boxes (‘superboxes’) are containers for other
boxes. Figure 4-1 gives an overview of the top-level boxes in a JP2 file.

Figure 4-1 Top-level overview of a JP2 file (based on Figure I.1 in ISO/IEC 15444-1). Boxes with
dashed borders are optional. 'Superbox' denotes a box that contains other box(es).

12

A number of things here are noteworthy to point out:

• Some of these boxes are required, whereas others (indicated with dashed lines in Figure
4-1) are optional.

• The order in which the boxes appear in the file is subject to some constraints (e.g. the
first box in a JP2 must always be a ‘Signature’ box, followed by a ‘File Type’ box).

• Some boxes may have multiple instances (e.g. ‘Contiguous Codestream’ box), whereas
others must be unique (e.g. ‘JP2 Header’ box).

More specific details can be found in the standard. The important thing here is that requirements
like the above are something that should be verified by a validator, and this is exactly what
jpylyzer does at the highest level of its validation procedure.

4.3 General structure of a box

All boxes are defined by a generic binary structure, which is illustrated by Figure 4-2. Most boxes
are made up of the following three components:

1. A fixed-length ‘box length’ field that indicates the total size of the box (in bytes).

2. A fixed-length ‘box type’ field which specifies the type of information that can be found
in this box

3. The box contents, which contains the actual information within the box. Its internal
format depends on the box type. The box contents of a ‘superbox’ will contain its child
boxes (which can be parsed recursively).

In some cases a box will also contain an ‘extended box length field’. This field is needed if the size
of a box exceeds 232-1 bytes, which is the maximum value that can be stored in the 4-byte ‘box
length’ field.

Figure 4-2 General structure of a box (based on Figure I.4 in ISO/IEC 15444-1).

4.4 Defined boxes in JP2

Table 4-1 lists all boxes that are defined in ISO/IEC 15444-1. A JP2 file may contain boxes that are
not defined by the standard. Such boxes are simply skipped and ignored by conforming reader
applications.

13

Table 4-1 Defined boxes in JP2 (taken from Table I.2 in ISO/IEC 15444-1, with minor
modifications). Indentation in ‘box name’ column indicates hierarchical structure.

Box name Superbox Required? Purpose

JPEG 2000 Signature box No Required Identifies the file as being part of the
JPEG 2000 family of files.

File Type box No Required

Specifies file type, version and
compatibility information, including
specifying if this file is a conforming JP2
file or if it can be read by a conforming
JP2 reader.

JP2 Header box Yes Required Contains a series of boxes that contain
header-type information about the file.

 - Image Header box No Required Specifies the size of the image and other
related fields.

 - Bits Per Component box No Optional

Specifies the bit depth of the
components in the file in cases where
the bit depth is not constant across all
components.

 - Colour Specification box No Required Specifies the colourspace of the image.

 - Palette box No Optional
Specifies the palette which maps a
single component in index space to a
multiple-component image.

 - Component Mapping box No Optional Specifies the mapping between a palette
and codestream components.

 - Channel Definition box No Optional

Specifies the type and ordering of the
components within the codestream, as
well as those created by the application
of a palette.

 - Resolution box Yes Optional Contains the grid resolution.
 - Capture
 Resolution box No Optional Specifies the grid resolution at which the

image was captured.
 - Default Display
 Resolution box No Optional Specifies the default grid resolution at

which the image should be displayed.
Contiguous Codestream box No Required Contains the codestream.

Intellectual Property box No Optional Contains intellectual property
information about the image.

XML box No Optional
Provides a tool by which vendors can
add XML formatted information to a JP2
file.

UUID box No Optional

Provides a tool by which vendors can
add additional information to a file
without risking conflict with other
vendors.

UUID Info box Yes Optional
Provides a tool by which a vendor may
provide access to additional information
associated with a UUID.

 - UUID List box No Optional Specifies a list of UUIDs.
 - URL box No Optional Specifies a URL.

14

15

5 Output format
This chapter explains jpylyzer’s output format.

5.1 Overview

Jpylyzer generates its output in XML format. Figure 5-1 shows the output structure.

Figure 5-1 Jpylyzer’s XML output structure. Note that ‘box’ elements under ‘tests’ and
‘properties’ contain further sub-elements.

16

The root element (jpylyzer) contains 5 child elements:

1. toolInfo: information about jpylyzer

2. fileInfo: general information about the analysed file

3. isValidJP2: outcome of the validation

4. tests: outcome of the individual tests that are part of the validation process (organised
by box)

5. properties: image properties (organised by box)

If jpylyzer is executed with the --wrapper option, the root element is results, which contains one
or more jpylyzer elements which otherwise follow the above structure.

5.2 toolInfo element

This element holds information about jpylyzer. Currently it contains the following sub-elements:

• toolName: name of the analysis tool (i.e. jpylyzer.py or jpylyzer, depending on whether
the Python script or the Windows binaries were used)

• toolVersion: version of jpylyzer (jpylyzer uses a date versioning scheme)

5.3 fileInfo element

This element holds general information about the analysed file. Currently it contains the following
sub-elements:

• filename: name of the analysed file without its path (e.g. “rubbish.jp2”)

• filePath: name of the analysed file, including its full absolute path (e.g.
“d:\data\images\rubbish.jp2”)

• fileSizeInBytes: file size in bytes

• fileLastModified: last modified date and time

5.4 isValidJP2 element

This element contains the results of the validation. If a file passed all the tests (i.e. all tests
returned “True”, see section 5.5) it is most likely valid JP2, and the value of isValidJP2 will be
“True”. Its value is “False” otherwise.

5.5 tests element

This element is reserved to hold the outcomes of all the individual tests that jpylyzer performs to
assess whether a file is valid JP2. The results are organised in a hierarchical tree that corresponds
to JP2’s box structure. Each individual test can have two values:

• “True” if a file passed the test.

• “False” if a file failed the test.

17

If a file passed all tests, this is an indication that it is most likely valid JP2. In that case, the
isValidJP2 element (section 5.4) has a value of “True” (and “False” in all other cases). These tests
are all explained in chapters 6 and 7.

Default and verbose reporting of test results

By default, jpylyzer only reports any tests that failed (i.e. returned “False”), including the
corresponding part of the box structure. For a valid JP2 the tests element will be empty. If the --
verbose flag is used, the results of all tests are included (including those that returned “True”)4.

5.6 properties element

This element contains the extracted image properties, which are organised in a hierarchical tree
that corresponds to JP2’s box structure. See chapters 6 and 7 for a description of the reported
properties.

4 Note that jpylyzer versions 1.4 and earlier used the verbose output format by default. This
behaviour has changed in version 1.5 onwards, as the lengthy output turned out to be slightly
confusing to some users.

18

19

6 JP2: box by box
The following two chapters provide a detailed explanation of jpylyzer’s functionality and its
output. In particular, the following two aspects are addressed:

1. The reported properties

2. The tests that jpylyzer performs to establish the validity of a file.

6.1 About the properties and tests trees

The ‘properties’ element in jpylyzer’s output holds a hierarchical tree structure that contains all
extracted properties. The ‘tests’ tree follows the same structure. The hierarchy reflects JP2’s box
structure (explained in Chapter 4): each box is represented by a corresponding output element
that contains the corresponding property entries. If a box is a superbox, the output element will
contain child elements for each child box. For some boxes, the output contains further sub-
elements. This applies in particular to the Contiguous Codestream box, since its contents are more
complex than any of the other boxes. Also, if a Colour Specification box contains an embedded ICC
profile, the properties of the ICC profile are stored in a separate sub-element. In addition to this,
one ‘property’ that is reported by jpylyzer (the compression ratio) is not actually extracted from
any particular box. Instead, it is calculated from the file size and some properties from the Header
boxes. As a result, it is reported separately in the root of the properties tree.

Naming of properties

The naming of the reported properties largely follows the standard (ISO/IEC 15444-1). Some
minor differences follow from the fact that the standard does have any consistent use of text
case, whereas jpylyzer uses lower camel case. In addition, some parameters in the standard are
compound units that aggregate a number of Boolean ‘switches’, where no names are provided for
each individual switch. An example of this is the Scod (coding style) parameter in the codestream
header, which contains three switches that define the use of precincts, start-of-packet markers
and end-of-packet markers. For cases like these jpylyzer uses its own (largely self-descriptive)
names (which are all documented in these chapters).

6.2 JPEG 2000 Signature box

This box contains information that allows identification of the file as being part of the JPEG 2000
family of file formats.

Element name

signatureBox

Reported properties

None (box only holds JPEG 2000 signature, which includes non-printable characters)

20

Tests

Test name True if

boxLengthIsValid Size of box contents equals 4 bytes

signatureIsValid Signature equals 0x0d0a870a

6.3 File Type box

This box specifies file type, version and compatibility information, including specifying if this file is
a conforming JP2 file or if it can be read by a conforming JP2 reader.

Element name

fileTypeBox

Reported properties

Property Description

br Brand

minV Minor version

cL* Compatibility field (repeatable)

Tests

Test name True if

boxLengthIsValid (Size of box – 8) /4 is a whole number (integer)

brandIsValid br equals 0x6a703220 (“jp2 ”)

minorVersionIsValid minV equals 0

compatibilityListIsValid Sequence of compatibility (cL) fields includes one
entry that equals 0x6a703220 (“jp2 ”)

6.4 JP2 Header box (superbox)

This box is a superbox that holds a series of boxes that contain header-type information about the
file.

Element name

jp2HeaderBox

Reported properties

Since this is a superbox, it contains a number of child boxes. These are represented as child
elements in the properties tree:

21

Child element Description

imageHeaderBox (section 6.5) Properties from Image Header box (required)

bitsPerComponentBox (section 6.6) Properties from Bits Per Component box (optional)

ColourSpecificationBox (section 6.7) Properties from Colour Specification box (required)

paletteBox (section 6.8) Properties from Palette box (optional)

componentMappingBox (section 6.9) Properties from Component Mapping box (optional)

channelDefinitionBox (section 6.10) Properties from Channel Definition box (optional)

resolutionBox (section 6.11) Properties from Resolution box (optional)

Tests

Test name True if

containsImageHeaderBox Box contains required Image Header box

containsColourSpecificationBox Box contains required Colour Specification box

containsBitsPerComponentBox Box contains Bits Per Component Box, which is
required if bPCSign and bPCDepth in Image Header
Box equal 1 and 128, respectively (test is skipped
otherwise)

firstJP2HeaderBoxIsImageHeaderBox First child box is Image Header Box

noMoreThanOneImageHeaderBox Box contains no more than one Image Header box

noMoreThanOneBitsPerComponentBox Box contains no more than one Bits Per Component
box

noMoreThanOnePaletteBox Box contains no more than one Palette box

noMoreThanOneComponentMappingBox Box contains no more than one Component
Mapping box

noMoreThanOneChannelDefinitionBox Box contains no more than one Channel Definition
box

noMoreThanOneResolutionBox Box contains no more than one Resolution box

colourSpecificationBoxesAreContiguous In case of multiple Colour Specification boxes, they
appear contiguously in the JP2 Header box

paletteAndComponentMappingBoxes
OnlyTogether

Box contains a Palette box (only if Component
Mapping box is present); box contains a Component
Mapping box (only if Palette box is present)

6.5 Image Header box (child of JP2 Header box)

This box specifies the size of the image and other related fields.

Element name

imageHeaderBox

22

Reported properties

Property Description

height Image height in pixels

width Image width in pixels

nC Number of image components

bPCSign Indicates whether image components are signed or
unsigned

bPCDepth Number of bits per component

c Compression type

unkC Colourspace Unknown field (“yes” if colourspace of
image data is unknown; “no” otherwise)

iPR Intellectual Property field (“yes” if image contains
intellectual property rights information; “no”
otherwise)

Tests

Test name True if

boxLengthIsValid Size of box contents equals 14 bytes

heightIsValid height is within range [1, 232 - 1]

widthIsValid width is within range [1, 232 - 1]

nCIsValid nC is within range [1, 16384]

bPCIsValid bPCDepth is within range [1,38] OR bPCSign equals
255 (in the latter case the bit depth is variable)

cIsValid c equals 7 (“jpeg2000”)

unkCIsValid unkC equals 0 (“no”) or 1 (“yes”)

iPRIsValid iPR equals 0 (“no”) or 1 (“yes”)

6.6 Bits Per Component box (child of JP2 Header box)

This (optional) box specifies the bit depth of the components in the file in cases where the bit
depth is not constant across all components.

Element name

bitsPerComponentBox

Reported properties

Property Description

bPCSign* Indicates whether image component is signed or
unsigned (repeated for each component)

bPCDepth* Number of bits for this component (repeated for
each component)

23

Tests

Test name True if

bPCIsValid* bPCDepth is within range [1,38] (repeated for each
component)

6.7 Colour Specification box (child of JP2 Header box)

This box specifies the colourspace of the image.

Element name

colourSpecificationBox

Reported properties

Property Description

meth Specification method. Indicates whether colourspace
of this image is defined as an enumerated colourspace
or using a (restricted) ICC profile.

prec Precedence

approx Colourspace approximation

enumCS (if meth equals “Enumerated”) Enumerated colourspace (as descriptive text string)

icc (if meth equals “Restricted ICC” or
“Any ICC”5)

Properties of ICC profile as child element (see below)

Reported properties of ICC profiles

If the colour specification box contains an embedded ICC profile, jpylyzer will also report the
following properties (which are all grouped in an “icc” sub-element in the properties tree). An
exhaustive explanation of these properties is given in the ICC specification (ISO 15076-1 /
ICC.1:2004-10). Note that jpylyzer does not validate embedded ICC profiles (even though it does
check if a specific ICC profile is allowed in JP2)!

5 The “Any ICC” method is defined in ISO/IEC 15444-2 (the JPX format), and is not allowed in JP2.
However, jpylyzer offers limited support for JPX here by also reporting the properties of ICC
profiles that were embedded using this method. Note that any file that uses this method will fail
the “methIsValid” test (and thereby the validation).

24

Property Description

profileSize Size of ICC profile in bytes

preferredCMMType Preferred CMM type

profileVersion Profile version. Format:
“majorRevision.minorRevision.bugFixRevision”

profileClass Profile/device class

colourSpace Colourspace

profileConnectionSpace Profile connection space

dateTimeString Date / time string. Format: “YYYY/MM/DD, h:m:s”

profileSignature Profile signature

primaryPlatform Primary platform

embeddedProfile Flag that indicates whether profile is embedded in file
(“yes”/”no”)

profileCannotBeUsedIndependently Flag that indicates whether profile cannot (!) be used
independently from the embedded colour data
(“yes”/”no”)

deviceManufacturer Identifies a device manufacturer

deviceModel Identifies a device model

transparency Indicates whether device medium is reflective or
transparent

glossiness Indicates whether device medium is glossy or matte

polarity Indicates whether device medium is positive or
negative

colour Indicates whether device medium is colour or black
and white

renderingIntent Rendering intent

connectionSpaceIlluminantX Profile connection space illuminant X

connectionSpaceIlluminantY Profile connection space illuminant Y

connectionSpaceIlluminantZ Profile connection space illuminant Z

profileCreator Identifies creator of profile

profileID Profile checksum (as hexadecimal string)

tag* Signature of profile tag (repeated for each tag in the
profile)

description Profile description (extracted from ‘desc’ tag)

25

Tests

Test name True if

methIsValid meth equals 1 (enumerated colourspace) or 2
(restricted ICC profile)

precIsValid prec equals 0

approxIsValid approx equals 0

enumCSIsValid (if meth equals
“Enumerated”)

enumCS equals 16 (“sRGB”), 17 (“greyscale”) or 18
(“sYCC”)

iccSizeIsValid (if meth equals
“Restricted ICC”)

Actual size of embedded ICC profile equals value of
profileSize field in ICC header

iccPermittedProfileClass (if meth
equals “Restricted ICC”)

ICC profile class is “input device” or “display device”6

iccNoLUTBasedProfile (if meth equals
“Restricted ICC”)

ICC profile type is not N-component LUT based (which
is not allowed in JP2)

6.8 Palette box (child of JP2 Header box)

This (optional) box specifies the palette which maps a single component in index space to a
multiple-component image.

Element name

paletteBox

Reported properties

Property Description

nE Number of entries in the table

nPC Number of palette columns

bSign* Indicates whether values created by this palette
column are signed or unsigned (repeated for each
column)

bDepth* Bit depth of values created by this palette column
(repeated for each column)

cP** Value for this entry (repeated for each column, and
for the number of entries)

6 Important: ISO/IEC 15444-1 only allows “input device” profiles. Support of “display device”
profiles will most likely be added soon through an amendment to the standard. Jpylyzer is already
anticipating these changes, but by doing so it is deviating from the existing standard in the interim
period.

26

Tests

Test name True if

nEIsValid nE is within range [0,1024]

nPCIsValid nPC is within range [1,255]

bDepthIsValid* bDepth is within range [1,38] (repeated for each
column)

6.9 Component Mapping box (child of JP2 Header box)

This (optional) box specifies the mapping between a palette and codestream components.

Element name

componentMappingBox

Reported properties

Property Description

cMP* Component index (repeated for each channel)

mTyp* Specifies how channel is generated from codestream
component (repeated for each channel)

pCol* Palette component index (repeated for each channel)

Tests

Test name True if

cMPIsValid cMP is within range [0,16384]

mTypIsValid* mTyp is within range [0,1] (repeated for each channel)

pColIsValid* pCol is 0 if mTyp is 0 (repeated for each channel)

6.10 Channel Definition box (child of JP2 Header box)

This (optional) box specifies the type and ordering of the components within the codestream, as
well as those created by the application of a palette.

Element name

channelDefinitionBox

27

Reported properties

Property Description

n Number of channel descriptions

cN* Channel index (repeated for each channel)

cTyp* Channel type (repeated for each channel)

cAssoc* Channel association (repeated for each channel)

Tests

Test name True if

nIsValid n is within range [1, 65535]

boxLengthIsValid (Size of box – 2) / equals 6*n

cNIsValid* cN is within range [0, 65535] (repeated for each
channel)

cTypIsValid* cType is within range [0, 65535] (repeated for each
channel)

cAssocIsValid* cAssoc is within range [0, 65535] (repeated for each
channel)

6.11 Resolution box (child of JP2 Header box, superbox)

This (optional) box contains the grid resolution.

Element name

resolutionBox

Reported properties

Since this is a superbox, it contains one or two child boxes. These are represented as child
elements in the properties tree:

Child element Description

captureResolutionBox (section 6.12) Properties from Capture Resolution box

displayResolutionBox (section 6.13) Properties from Default Display Resolution box

Tests

Test name True if

containsCaptureOrDisplayResolutionBox Box contains either a Capture Resolution box or a
Default Display Resolution box, or both

noMoreThanOneCaptureResolutionBox Box contains no more than one Capture Resolution
box

noMoreThanOneDisplayResolutionBox Box contains no more than one Default Display
Resolution box

28

6.12 Capture Resolution box (child of Resolution box)

This (optional) box specifies the grid resolution at which the image was captured.

Element name

captureResolutionBox

Reported properties

Resolution information in this box is stored as a set of vertical and horizontal numerators,
denominators and exponents. Jpylyzer also reports the corresponding grid resolutions in pixels
per meter and pixels per inch, which are calculated from these values.

Property Description

vRcN Vertical grid resolution numerator

vRcD Vertical grid resolution denominator

hRcN Horizontal grid resolution numerator

hRcD Horizontal grid resolution denominator

vRcE Vertical grid resolution exponent

hRcE Horizontal grid resolution exponent

vRescInPixelsPerMeter Vertical grid resolution, expressed in pixels per meter7

hRescInPixelsPerMeter Horizontal grid resolution, expressed in pixels per
meter8

vRescInPixelsPerInch Vertical grid resolution, expressed in pixels per inch9

hRescInPixelsPerInch Horizontal grid resolution, expressed in pixels per
inch10

Tests

Test name True if

boxLengthIsValid Size of box contents equals 10 bytes

vRcNIsValid vRcN is within range [1,65535]

vRcDIsValid vRcD is within range [1,65535]

hRcNIsValid hRcN is within range [1,65535]

hRcDIsValid hRcD is within range [1,65535]

vRcEIsValid vRcE is within range [-127,128]

hRcEIsValid hRcE is within range [-127,128]

7 Calculated as: vRcE

vRcD
vRcN 10⋅

8 Calculated as: hRcE

hRcD
hRcN 10⋅

9 Calculated as: 3104.25relsPerMetevRescInPix −⋅⋅
10 Calculated as: 3104.25relsPerMetehRescInPix −⋅⋅

29

6.13 Default Display Resolution box (child of Resolution box)

This (optional) box specifies the default grid resolution at which the image should be displayed.

Element name

displayResolutionBox

Reported properties

Resolution information in this box is stored as a set of vertical and horizontal numerators,
denominators and exponents. Jpylyzer also reports the corresponding grid resolutions in pixels
per meter and pixels per inch, which are calculated from these values.

Property Description

vRdN Vertical grid resolution numerator

vRdD Vertical grid resolution denominator

hRdN Horizontal grid resolution numerator

hRdD Horizontal grid resolution denominator

vRdE Vertical grid resolution exponent

hRdE Horizontal grid resolution exponent

vResdInPixelsPerMeter Vertical grid resolution, expressed in pixels per
meter11

hResdInPixelsPerMeter Horizontal grid resolution, expressed in pixels per
meter12

vResdInPixelsPerInch Vertical grid resolution, expressed in pixels per inch13

hResdInPixelsPerInch Horizontal grid resolution, expressed in pixels per
inch14

11 Calculated as: vRdE

vRdD
vRdN 10⋅

12 Calculated as: hRdE

hRdD
hRdN 10⋅

13 Calculated as: 3104.25relsPerMetevResdInPix −⋅⋅
14 Calculated as: 3104.25relsPerMetehResdInPix −⋅⋅

30

Tests

Test name True if

boxLengthIsValid Size of box contents equals 10 bytes

vRdNIsValid vRdN is within range [1,65535]

vRdDIsValid vRdD is within range [1,65535]

hRdNIsValid hRdN is within range [1,65535]

hRdDIsValid hRdD is within range [1,65535]

vRdEIsValid vRdE is within range [-127,128]

hRdEIsValid hRdE is within range [-127,128]

6.14 Contiguous Codestream box

This box contains the codestream. See chapter 7.

6.15 Intellectual Property box

This (optional) box contains intellectual property information about the image. The JP2 format
specification (ISO/IEC 15444-1) does not provide any specific information about this box, other
than stating that “the definition of the format of [its] contents […] is reserved for ISO”. As a
result, jpylyzer does not currently include a validator function for this box, which is now simply
ignored. Jpylyzer will display a user warning message in that case.

6.16 XML box

This (optional) box contains XML formatted information.

Element name

xmlBox

Reported properties

If the contents of this box are well-formed XML (see ‘tests’ below), the ‘xmlBox’ element in the
properties tree will contain the contents of the XML box. Note that, depending on the character
encoding of the original XML, it may contain characters that are not allowed in ASCII (which is the
encoding used for jpylyzer’s output). Any such characters will be represented by numerical entity
references in the output. If the box contents are not well-formed XML, no properties are reported
for this box.

Tests

Test name True if

containsWellformedXML Contents of box are parsable, well-formed XML

Note that jpylyzer does not check whether the XML is valid, as this is not required by the standard.
Besides, doing so would make jpylyzer significantly slower for XML that contains references to
external schemas and DTDs.

31

6.17 UUID box

This (optional) box contains additional (binary) information, which may be vendor-specific. Some
applications (e.g. Kakadu and ExifTool) also use this box for storing XMP metadata (see Section
1.1.4 in Part 3 of the XMP specification15).

Element name

uuidBox

Reported properties

If the value of uuid indicates the presence of XMP metadata and the contents of this box are well-
formed XML, (see ‘tests’ below), the ‘uuidBox’ element in the properties tree will contain the XMP
data. Note that, depending on the character encoding of the original XML, it may contain
characters that are not allowed in ASCII (which is the encoding used for jpylyzer’s output). Any
such characters will be represented by numerical entity references in the output. In all other
cases, the ‘uuidBox’ element will contain a standard string representation the of UUID.

Property Description

uuid Standard string representation of UUID (only if uuid
has value other than be7acfcb-97a9-42e8-9c71-
999491e3afac). For an explanation of UUIDs see e.g.
Leach et al., 2005.

XMP data XMP metadata (only if uuid has value be7acfcb-97a9-
42e8-9c71-999491e3afac)

Note that except for the XMP case, jpylyzer will not be able to report any information on the
actual contents of this box, since it is defined outside of the scope of JPEG 2000.

Tests

Test name True if

boxLengthIsValid Size of box contents is greater than 16 bytes

containsWellformedXML Contents of box are parsable, well-formed XML (this
test is only performed if uuid has value be7acfcb-
97a9-42e8-9c71-999491e3afac)

15 Link:
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/cs6/
XMPSpecificationPart3.pdf

http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/cs6/XMPSpecificationPart3.pdf
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/xmp/pdfs/cs6/XMPSpecificationPart3.pdf

32

6.18 UUID Info box (superbox)

This (optional) box contains additional information associated with a UUID.

Element name

uuidInfoBox

Reported properties

This is a superbox which contains two child boxes. These are represented as child elements in the
properties tree:

Child element Description

uuidListBox (section 6.19) Properties from UUID List box

urlBox (section 6.20) Properties from Data Entry URL box

Tests

Test name True if

containsOneListBox Box contains exactly one UUID List box

containsOneURLBox Box contains exactly one Data Entry URL box

6.19 UUID List box (child of UUID Info box)

This (optional) box specifies a list of UUIDs.

Element name

uuidListBox

Reported properties

Property Description

nU Number of UUIDs

uuid* Standard string representation of UUID (repeated nU
times)

Tests

Test name True if

boxLengthIsValid Size of box equals nU*16 + 2

6.20 Data Entry URL box (child of UUID Info box)

This (optional) box specifies a URL.

33

Element name

urlBox

Reported properties

Property Description

version Version number

loc Location, which specifies a URL of the additional
information associated with the UUIDs in the UUID
List box that resides in the same UUID Info box

Tests

Test name True if

flagIsValid Three bytes that make up “flag” field equal 0x00 00 00
(‘flag’ is not reported to output because it only
contains null bytes)

locIsUTF8 Location (URL) can be decoded to UTF-8

6.21 Unknown box

An image may contain boxes that are not defined by ISO/IEC 15444-1. Although jpylyzer ignores
such boxes, it will report some minimal info that will allow interested users to identify them to a
limited extent.

Element name

unknownBox

Reported properties

Property Description

boxType Four-character text string that specifies the type of
information that is found in this box (corresponds to
TBox in section I.4 of ISO/IEC 15444-1).

6.22 Top-level tests and properties

This section describes the tests and output for the top file level.

Element name

properties

34

Reported properties

The metrics that are listed here are not ‘properties’ in a strict sense; instead they are secondary or
derived metrics that are calculated by combining information from different parts / boxes of the
file.

Property Description

compressionRatio Compression ratio

The compression ratio is calculated as the ratio between the size of the uncompressed image data
and the actual file size:

ssedsizeCompre
ressedsizeUncompnRatiocompressio =

 Here, sizeCompressed is simply the file size (fileSizeInBytes in output file’s ‘fileInfo’ element). The
uncompressed size (in bytes) can be calculated by multiplying the number of bytes per pixel by
the total number of pixels:

∑
=

⋅⋅⋅=
nC

i
i widthheightbPCDepthressedsizeUncomp

18
1

With:

nC : number of image components (from Image Header box)

i : component index

bPCDepthi : bits per component for component i (from Image Header box or Bits Per
 Component box)

height : image height (from Image Header box)

width : image width (from Image Header box)

In addition, the root of the properties tree contains the elements for all top-level boxes:

35

Child element Description

signatureBox (section 6.2) Properties from JPEG 2000 Signature box

fileTypeBox (section 6.3) Properties from File Type box

jp2HeaderBox (section 6.4) Properties from JP2 Header box

contiguousCodestreamBox (chapter 7) Properties from Contiguous Codestream box

intellectualPropertyBox (section 6.15) Properties from Intellectual Property box (optional)

xmlBox (section 6.16) Properties from XML box (optional)

uuidBox (section 6.17) Properties from UUID box (optional)

uuidInfoBox (section 6.18) Properties from UUID Info box (optional)

Tests

The tests that jpylyzer performs at the root level fall in either of the following two categories:

1. Tests for the presence of required top-level boxes, the order in which they appear and
restrictions on the number of instances for specific boxes

2. Tests for consistency of information in different parts of the file. In particular, a lot of the
information in the Image Header box is redundant with information in the codestream
header, and jpylyzer performs a number of tests to verify the consistency between these
two.

36

Test name True if

containsSignatureBox File root contains a JPEG 2000 Signature box

containsFileTypeBox File root contains a File Type box

containsJP2HeaderBox File root contains a JP2 Header box

containsContiguousCodestreamBox File root contains a Contiguous Codestream box

containsIntellectualPropertyBox File root contains an Intellectual Property box, which
is required if iPR field in Image Header Box equals 1
(test is skipped otherwise)

firstBoxIsSignatureBox First box is JPEG 2000 Signature box

secondBoxIsFileTypeBox Second box is File Type box

locationJP2HeaderBoxIsValid JP2 Header box is located after File Type Box and
before (first) Contiguous Codestream box

noMoreThanOneSignatureBox File root contains no more than one JPEG 2000
Signature box

noMoreThanOneFileTypeBox File root contains no more than one File Type box

noMoreThanOneJP2HeaderBox File root contains no more than one JP2 Header box

heightConsistentWithSIZ Value of height from Image Header Box equals ysiz –
yOsiz from codestream SIZ header

widthConsistentWithSIZ Value of width from Image Header Box equals xsiz –
xOsiz from codestream SIZ header

nCConsistentWithSIZ Value of nC from Image Header Box equals csiz from
codestream SIZ header

bPCSignConsistentWithSIZ Values of bPCSign from Image Header box (or Bits Per
Component box) are equal to corresponding ssizSign
values from codestream SIZ header

bPCDepthConsistentWithSIZ Values of bPCDepth from Image Header box (or Bits
Per Component box) are equal to corresponding
ssizDepth values from codestream SIZ header

37

7 Contiguous Codestream
box

7.1 General codestream structure

The Contiguous Codestream box holds the JPEG 2000 codestream, which contains the actual
image data in a JP2.

Markers and marker segments

A codestream is made up of a number of functional entities which are called markers and marker
segments. A marker is essentially a 2-byte delimiter that delineates the start or end position of a
functional entity. A marker segment is the combination of a marker and a set of associated
parameters (segment parameters). However, not every marker has any associated parameters.

General structure of the codestream

The codestream is made up of the following components (illustrated in Figure 7-1):

1. A start of codestream marker that indicates the start of the codestream

2. A main codestream header (which includes a number of header marker segments)

3. A sequence of one or more tile parts. Each tile part consists of the following
components:

a. A start of tile-part marker segment, which indicates the start of a tile part and
which also contains index information of the tile part and its associated tile

b. Optionally this may be followed by one or more additional tile-part header
marker segments

c. A start of data marker that indicates the start of the bitstream for the current
tile part

d. The bitstream

4. An ‘end of codestream’ marker that indicates the end of the codestream.

38

Figure 7-1 General structure of a JPEG 2000 codestream.

7.2 Limitations of codestream validation

It is important to stress here that jpylyzer currently doesn’t support the full set of marker
segments that can occur in a codestream. As a result, the validation of codestreams is somewhat
limited. These limitations are discussed in this section.

Main codestream header

Annex A of ISO/IEC 15444-1 lists a total of 13 marker segments that can occur in the main
codestream header. Most of these are optional. The current version of jpylyzer only offers full
support (i.e. reads and validates) for the following main header marker segments (which includes
all the required ones):

• Start of codestream (SOC) marker segment (required)

• Image and tile size (SIZ) marker segment (required)

• Coding style default (COD) marker segment (required)

• Quantization default (QCD) marker segment (required)

• Comment (COM) marker segment (optional)

39

In addition the codestream header may also contain any of the following marker segments, which
are all optional:

• Coding style component (COC) marker segment (optional)*

• Region-of-interest (RGN) marker segment (optional) *

• Quantization component (QCC) marker segment (optional) *

• Progression order change (POC) marker segment (optional) *

• Packet length, main header (PLM) marker segment (optional) *

• Packed packet headers, main header (PPM) marker segment (optional) *

• Tile-part lengths (TLM) marker segment (optional) *

• Component registration (CRG) marker segment (optional) *

The above marker segments (which are marked with an asterisk) are only minimally supported at
this stage: if jpylyzer encounters any of them, it will include the corresponding element in the
properties element of the output. However, jpylyzer currently does not analyse the contents of
these marker segments, which means that the respective elements in the output will be empty.

Tile parts

The tile part validation has similar limitations. The standard lists 11 marker segments that can
occur in the tile part header. Currently, jpylyzer only fully supports the following ones:

• Start of tile part (SOT) marker segment (required)

• Coding style default (COD) marker segment (optional)

• Quantization default (QCD) marker segment (optional)

• Comment (COM) marker segment (optional)

• Start of data (SOD) marker segment (required)

In addition the following optional marker segments may also occur:

• Coding style component (COC) marker segment (optional)*

• Region-of-interest (RGN) marker segment (optional) *

• Quantization component (QCC) marker segment (optional) *

• Progression order change (POC) marker segment (optional) *

• Packet length, tile-part header (PLT) marker segment (optional) *

• Packed packet headers, tile-part header (PPT) marker segment (optional) *

These marker segments (which are marked with an asterisk) are only minimally supported at this
stage: if jpylyzer encounters any of them, it will include the corresponding element in the

40

properties element of the output. However, jpylyzer currently does not analyse their contents,
and the respective elements in the output will be empty.

Bit streams

In addition to the above limitations, jpylyzer can not be used to establish whether the data in the
bitstream are correct (this would require decoding the compressed image data, which is
completely out of jpylyzer’s scope)16. As a result, if jpylyzer is used as part of a quality assurance
workflow, it is recommended to also include an additional check on the image contents17. Also,
jpylyzer does not perform any checks on marker segments within the bit-stream: start-of packet
(SOP) and end-of-packet (EPH) markers.

Detection of incomplete or truncated codestreams

A JP2’s tile part header contains information that makes it possible to detect incomplete and
truncated codestreams in most cases. Depending on the encoder software used, this method may
fail for images that only contain one single tile part (i.e. images that do not contain tiling).

Current limitations of comment extraction

Both the codestream header and the tile part header can contain comment marker segments,
which are used for embedding arbitrary binary data or text. Jpylyzer will extract the contents of
any comments that are text.

7.3 Structure of reported output

Figure 7-2 illustrates the structure of jpylyzer’s codestream-level output. At the top level, the SIZ,
COD, QCD and COM marker segments are each represented as individual sub elements. The tile
part properties are nested in a tileParts element, where each individual tile part is represented as
a separate tilePart sub element.

16 However, support for start of packet (SOP) and end of packet (EPH) markers may be included in
future versions.
17 For example, in a TIFF to JP2 conversion workflow one could include a pixel-by-pixel comparison
of the values in the TIFF and the JP2.

41

Figure 7-2 Structure of codestream-level XML output

7.4 Contiguous Codestream box

Element name

contiguousCodestreamBox

Reported properties

The reported properties for this box are organised into a number groups, which are represented
as child elements in the properties tree:

42

Child element Description

siz (section 7.5) Properties from the image and tile size (SIZ) marker
segment (codestream main header)

cod (section 7.6) Properties from the coding style default (COD) marker
segment (codestream main header)

qcd (section 7.7) Properties from the quantization default (QCD)
marker segment (codestream main header)

com (section 7.8) Properties from the (optional) comment (COM)
marker segment (codestream main header)

tileParts (section 7.9) Properties from individual tile parts

Tests

Test name True if

codestreamStartsWithSOCMarker First 2 bytes in codestream constitute a start of
codestream (SOC) marker segment

foundSIZMarker Second marker segment in codestream is image and
tile size (SIZ) marker segment

foundCODMarker Codestream main header contains coding style
default (COD) marker segment

foundQCDMarker Codestream main header contains quantization
default (QCD) marker segment

quantizationConsistentWithLevels Values of quantization parameters from QCD marker
segment are consistent with levels from COD marker
segment18

foundExpectedNumberOfTiles Number of encountered tiles is consistent with
expected number of tiles (as calculated from SIZ
marker, see section 7.5)

foundExpectedNumberOfTileParts For all tiles, number of encountered tile parts is
consistent with expected number of tile parts (values
of tnsot from SOT marker, see section 7.10)

foundEOCMarker Last 2 bytes in codestream constitute an end of
codestream (EOC) marker segment

18 The consistency check verifies if the length of the quantization default marker segment (lqcd
from qcd) is consistent with the quantization style (qStyle from qcd) and the number of
decomposition levels (levels from cod). They are consistent if the following equation is true:

=⋅+
=
=⋅+

=
)(265

)(15
)(034

expoundedscalarqStylelevels
derivedscalarqStyle

onquantizatinoqStylelevels
lqcd

43

7.5 Image and tile size (SIZ) marker segment (child of Contiguous Codestream box)

Element name

siz

Reported properties

Property Description

lsiz Length of SIZ marker segment in bytes

rsiz Decoder capabilities

xsiz Width of reference grid

ysiz Heigth of reference grid

xOsiz Horizontal offset from origin of reference grid to left
of image area

yOsiz Vertical offset from origin of reference grid to top of
image area

xTsiz Width of one reference tile with respect to the
reference grid

yTsiz Height of one reference tile with respect to the
reference grid

xTOsiz Horizontal offset from origin of reference grid to left
side of first tile

yTOsiz Vertical offset from origin of reference grid to top side
of first tile

numberOfTiles Number of tiles19

csiz Number of components

ssizSign* Indicates whether image component is signed or
unsigned (repeated for each component)

ssizDepth* Number of bits for this component (repeated for
each component)

xRsiz* Horizontal separation of sample of this component
with respect to reference grid (repeated for each
component)

yRsiz* Vertical separation of sample of this component with
respect to reference grid (repeated for each
component)

19 Calculated as

 −
⋅

 −

=
yTsiz

yOsizysiz
xTsiz

xOsizxsizlesnumberOfTi

44

Tests

Test name True if

lsizIsValid lsiz is within range [41,49190]

rsizIsValid rsiz equals 0 (“ISO/IEC 15444-1”), 1 (“Profile 0”) or 2
(“Profile 1”)

xsizIsValid xsiz is within range [1,232 - 1]

ysizIsValid ysiz is within range [1,232 - 1]

xOsizIsValid xOsiz is within range [0,232 - 2]

yOsizIsValid yOsiz is within range [0,232 - 2]

xTsizIsValid xTsiz is within range [1,232 - 1]

yTsizIsValid yTsiz is within range [1,232 - 1]

xTOsizIsValid xTOsiz is within range [0,232 - 2]

yTOsizIsValid yTOsiz is within range [0,232 - 2]

csizIsValid csiz is within range [1,16384]

lsizConsistentWithCsiz lsiz equals 38 + 3*csiz

ssizIsValid* ssizDepth is within range [1,38] (repeated for each
component)

xRsizIsValid* xRsiz is within range [1,255] (repeated for each
component)

yRsizIsValid* yRsiz is within range [1,255] (repeated for each
component)

45

7.6 Coding style default (COD) marker segment

Element name

cod

Reported properties

Property Description

lcod Length of COD marker segment in bytes

precincts Indicates use of precincts (“yes”/“no”)

sop Indicates use of start of packet marker segments
(“yes”/“no”)

eph Indicates use of end of packet marker segments
(“yes”/“no”)

order Progression order

layers Number of layers

multipleComponentTransformation Indicates use of multiple component transformation
(“yes”/“no”)

levels Number of decomposition levels

codeBlockWidth Code block width

codeBlockHeight Code block height

codingBypass Indicates use of coding bypass (“yes”/“no”)

resetOnBoundaries Indicates reset of context probabilities on coding pass
boundaries (“yes”/“no”)

termOnEachPass Indicates termination on each coding pass
(“yes”/“no”)

vertCausalContext Indicates vertically causal context (“yes”/“no”)

predTermination Indicates predictable termination (“yes”/“no”)

segmentationSymbols Indicates use of segmentation symbols (“yes”/“no”)

transformation Wavelet transformation: “9-7 irreversible” or “5-3
reversible”

precinctSizeX* Precinct width (repeated for each resolution level;
order: low to high) (only if precincts is “yes”)

precinctSizeY* Precinct heigth (repeated for each resolution level;
order: low to high) (only if precincts is “yes”)

46

Tests

Test name True if

lcodIsValid lcod is within range [12,45]

orderIsValid order equals 0 (“LRCP”), 1 (“RLCP”), 2 (“RPCL”), 3
(“PCRL”) or 4 (“CPRL”)

layersIsValid layers is within range [1,65535]

multipleComponentTransformation
IsValid

multipleComponentTransformation equals 0 or 1

levelsIsValid levels is within range [0,32]

lcodConsistentWithLevelsPrecincts lcod equals 12 (precincts = “no”) or lcod equals 13 +
levels (precincts = “yes”)

codeBlockWidthExponentIsValid codeBlockWidthExponent is within range [2,10]

codeBlockHeightExponentIsValid codeBlockHeightExponent is within range [2,10]

sumHeightWidthExponentIsValid codeBlockWidthExponent +
codeBlockHeightExponent ≤ 12

precinctSizeXIsValid* precinctSizeX ≥ 2 (except lowest resolution level)
(repeated for each resolution level; order: low to
high) (only if precincts is “yes”)

precinctSizeYIsValid* precinctSizeY ≥ 2 (except lowest resolution level)
(repeated for each resolution level; order: low to
high) (only if precincts is “yes”)

47

7.7 Quantization default (QCD) marker segment

Element name

qcd

Reported properties

Property Description

lqcd Length of QCD marker segment in bytes

qStyle Quantization style for all components

guardBits Number of guard bits

epsilon* • If qStyle equals 0 (“no quantization”): Epsilon
exponent in Eq E-5 of ISO/IEC 15444-1 (repeated
for all decomposition levels; order: low to high)

• If qStyle equals 1 (“scalar derived”): Epsilon
exponent in Eq E-3 of ISO/IEC 15444-1

• If qStyle equals 2 (“scalar expounded”): Epsilon
exponent in Eq E-3 of ISO/IEC 15444-1 (repeated
for all decomposition levels; order: low to high)

mu* • If qStyle equals 1 (“scalar derived”): mu constant
in Eq E-3 of ISO/IEC 15444-1

• if qStyle equals 2 (“scalar expounded”) : mu
constant in Eq E-3 of ISO/IEC 15444-1 (repeated
for all decomposition levels; order: low to high)

Tests

Test name True if

lqcdIsValid lqcd is within range [4,197]

qStyleIsValid qStyle equals 0 (“no quantization”), 1 (“scalar
derived”), or 2 (“scalar expounded”)

48

7.8 Comment (COM) marker segment

Element name

com

Reported properties

Property Description

lcom Length of COM marker segment in bytes

rcom Registration value of marker segment (indicates
whether this comment contains binary data or text)

comment Embedded comment as text (only if rcom = 1)

Tests

Test name True if

lcomIsValid lqcd is within range [5,65535]

rcomIsValid rcom equals 0 (“binary”) or 1 (“ISO/IEC 8859-15
(Latin”))

Note on support of Latin encoding

If a codestream comment contains characters that are not allowed in ASCII, these will be
represented by numeric entity references in the output (this applies to, for example, accented
characters, which are common in e.g. French and German).

49

7.9 Tile part (child of Contiguous Codestream box)

Tile-part level properties and tests. This is not a box or a marker segment!

Element name

tilePart (child of tileParts)

Reported properties

Each tile part element can contain a number of child elements:

Child element Description

sot (section 7.10) Properties from start of tile (SOT) marker segment

cod (section 7.6) Properties from the (optional) coding style default
(COD) marker segment (tile part header)

qcd (section 7.7) Properties from the (optional) quantization default
(QCD) marker segment (tile part header)

com (section 7.8) Properties from the (optional) comment (COM)
marker segment (tile part header)

Tests

Test name True if

foundNextTilePartOrEOC Tile part start offset + tilePartLength points to either
start of new tile or EOC marker (useful for detecting
within-codestream byte corruption)

7.10 Start of tile part (SOT) marker segment (child of tile part)

Element name

sot

Reported properties

Property Description

lsot Length of SOT marker segment in bytes

isot Tile index

psot Length of tile part

tpsot Tile part index

tnsot Number of tile-parts of a tile in the codestream (value
of 0 indicates that number of tile-parts of tile in the
codestream is not defined in current header)

50

Tests

Test name True if

lsotIsValid lsot equals 10

isotIsValid isot is within range [0,65534]

psotIsValid psot is not within range [1,13]

tpsotIsValid tpsot is within range [0,254]

The following marker segments are only minimally supported: jpylyzer will report their presence in the
properties element, but it does not perform any further tests or analyses. This may change in upcoming
versions of the software.

7.11 Coding style component (COC) marker segment

Element name

coc

Reported properties

Property Description

Tests

Test name True if

7.12 Region-of-interest (RGN) marker segment

Element name

rgn

Reported properties

Property Description

Tests

Test name True if

51

7.13 Quantization component (QCC) marker segment

Element name

qcc

Reported properties

Property Description

Tests

Test name True if

7.14 Progression order change (POC) marker segment

Element name

poc

Reported properties

Property Description

Tests

Test name True if

7.15 Packet length, main header (PLM) marker segment

Element name

plm

52

Reported properties

Property Description

Tests

Test name True if

7.16 Packed packet headers, main header (PPM) marker segment

Element name

ppm

Reported properties

Property Description

Tests

Test name True if

7.17 Tile-part lengths (TLM) marker segment

Element name

tlm

Reported properties

Property Description

Tests

Test name True if

53

7.18 Component registration (CRG) marker segment

Element name

crg

Reported properties

Property Description

Tests

Test name True if

7.19 Packet length, tile-part header (PLT) marker segment

Element name

plt

Reported properties

Property Description

Tests

Test name True if

7.20 Packed packet headers, tile-part header (PPT) marker segment

Element name

ppt

54

Reported properties

Property Description

Tests

Test name True if

55

8 References
ICC. Specification ICC.1:1998-09 – File Format for Color Profiles. International Color Consortium,
1998. 29 December 2010 <http://www.color.org/ICC-1_1998-09.pdf>.

ISO/IEC. Information technology — JPEG 2000 image coding system: Core coding system. ISO/IEC
15444-1, Second edition. Geneva: ISO/IEC, 2004a. 28 Dec 2010
<http://www.jpeg.org/public/15444-1annexi.pdf> (“Annex I: JP2 file format syntax” only).

ISO/IEC. Information technology — JPEG 2000 image coding system: Extensions. ISO/IEC 15444-2,
First edition. Geneva: ISO/IEC, 2004b. 28 Dec 2010 <http://www.jpeg.org/public/15444-
2annexm.pdf> (“Annex M: JPX extended file format syntax” only).

Leach, P., Mealling, M. & Salz, R. A Universally Unique IDentifier (UUID) URN namespace. Memo,
IETF. July 2005 <http://tools.ietf.org/html/rfc4122.html>.

http://www.color.org/ICC-1_1998-09.pdf
http://www.jpeg.org/public/15444-1annexi.pdf
http://www.jpeg.org/public/15444-2annexm.pdf
http://www.jpeg.org/public/15444-2annexm.pdf
http://tools.ietf.org/html/rfc4122.html

56

	1 Introduction
	1.1 About jpylyzer
	1.2 Validation: scope and restrictions
	‘Valid’ means ‘probably valid’
	No check on compressed bitstreams
	Recommendations for use in quality assurance workflows
	Note on ICC profile support

	1.3 Outline of this User Manual
	1.4 Funding
	1.5 License

	2 Installation and set-up
	2.1 Obtaining the software
	2.2 Installation of Python script (Linux/Unix, Windows, Mac OS X)
	Testing the installation
	Troubleshooting

	2.3 Installation of Windows binaries (Windows only)
	Testing the installation
	Running jpylyzer without typing the full path

	2.4 Installation of Debian packages (Ubuntu/Linux)

	3 Using jpylyzer
	3.1 Overview
	3.2 Command-line usage
	Synopsis
	Output redirection
	Creating well-formed XML with multiple images
	User warnings

	3.3 Using jpylyzer as a Python module

	4 Structure of a JP2 file
	4.1 Scope of this chapter
	4.2 General format structure
	4.3 General structure of a box
	4.4 Defined boxes in JP2

	5 Output format
	5.1 Overview
	5.2 toolInfo element
	5.3 fileInfo element
	5.4 isValidJP2 element
	5.5 tests element
	Default and verbose reporting of test results

	5.6 properties element

	6 JP2: box by box
	6.1 About the properties and tests trees
	Naming of properties

	6.2 JPEG 2000 Signature box
	Element name
	Reported properties
	Tests

	6.3 File Type box
	Element name
	Reported properties
	Tests

	6.4 JP2 Header box (superbox)
	Element name
	Reported properties
	Tests

	6.5 Image Header box (child of JP2 Header box)
	Element name
	Reported properties
	Tests

	6.6 Bits Per Component box (child of JP2 Header box)
	Element name
	Reported properties
	Tests

	6.7 Colour Specification box (child of JP2 Header box)
	Element name
	Reported properties
	Reported properties of ICC profiles
	Tests

	6.8 Palette box (child of JP2 Header box)
	Element name
	Reported properties
	Tests

	6.9 Component Mapping box (child of JP2 Header box)
	Element name
	Reported properties
	Tests

	6.10 Channel Definition box (child of JP2 Header box)
	Element name
	Reported properties
	Tests

	6.11 Resolution box (child of JP2 Header box, superbox)
	Element name
	Reported properties
	Tests

	6.12 Capture Resolution box (child of Resolution box)
	Element name
	Reported properties
	Tests

	6.13 Default Display Resolution box (child of Resolution box)
	Element name
	Reported properties
	Tests

	6.14 Contiguous Codestream box
	6.15 Intellectual Property box
	6.16 XML box
	Element name
	Reported properties
	Tests

	6.17 UUID box
	Element name
	Reported properties
	Tests

	6.18 UUID Info box (superbox)
	Element name
	Reported properties
	Tests

	6.19 UUID List box (child of UUID Info box)
	Element name
	Reported properties
	Tests

	6.20 Data Entry URL box (child of UUID Info box)
	Element name
	Reported properties
	Tests

	6.21 Unknown box
	Element name
	Reported properties

	6.22 Top-level tests and properties
	Element name
	Reported properties
	Tests

	7 Contiguous Codestream box
	7.1 General codestream structure
	Markers and marker segments
	General structure of the codestream

	7.2 Limitations of codestream validation
	Main codestream header
	Tile parts
	Bit streams
	Detection of incomplete or truncated codestreams
	Current limitations of comment extraction

	7.3 Structure of reported output
	7.4 Contiguous Codestream box
	Element name
	Reported properties
	Tests

	7.5 Image and tile size (SIZ) marker segment (child of Contiguous Codestream box)
	Element name
	Reported properties
	Tests

	7.6 Coding style default (COD) marker segment
	Element name
	Reported properties
	Tests

	7.7 Quantization default (QCD) marker segment
	Element name
	Reported properties
	Tests

	7.8 Comment (COM) marker segment
	Element name
	Reported properties
	Tests
	Note on support of Latin encoding

	7.9 Tile part (child of Contiguous Codestream box)
	Element name
	Reported properties
	Tests

	7.10 Start of tile part (SOT) marker segment (child of tile part)
	Element name
	Reported properties
	Tests

	7.11 Coding style component (COC) marker segment
	Element name
	Reported properties
	Tests

	7.12 Region-of-interest (RGN) marker segment
	Element name
	Reported properties
	Tests

	7.13 Quantization component (QCC) marker segment
	Element name
	Reported properties
	Tests

	7.14 Progression order change (POC) marker segment
	Element name
	Reported properties
	Tests

	7.15 Packet length, main header (PLM) marker segment
	Element name
	Reported properties
	Tests

	7.16 Packed packet headers, main header (PPM) marker segment
	Element name
	Reported properties
	Tests

	7.17 Tile-part lengths (TLM) marker segment
	Element name
	Reported properties
	Tests

	7.18 Component registration (CRG) marker segment
	Element name
	Reported properties
	Tests

	7.19 Packet length, tile-part header (PLT) marker segment
	Element name
	Reported properties
	Tests

	7.20 Packed packet headers, tile-part header (PPT) marker segment
	Element name
	Reported properties
	Tests

	8 References

