
2009 10th International Conference on Document Analysis and Recognition

978-0-7695-3725-2/09 $25.00 © 2009 IEEE 241
DOI 10.1109/ICDAR.2009.257

Hybrid Page Layout Analysis via Tab-Stop Detection

Ray Smith
Google Inc. 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA.

theraysmith@gmail.com

Abstract

A new hybrid page layout analysis algorithm is
proposed, which uses bottom-up methods to form an
initial data-type hypothesis and locate the tab-stops
that were used when the page was formatted. The
detected tab-stops, are used to deduce the column
layout of the page. The column layout is then applied
in a top-down manner to impose structure and
reading-order on the detected regions.

The complete C++ source code implementation is
available as part of the Tesseract open source OCR
engine at http://code.google.com/p/tesseract-ocr.

1. Introduction

Physical Page layout analysis, one of the first steps
of OCR, divides an image into areas of text and non-
text, as well as splitting multi-column text into
columns. This paper does not address logical layout
analysis, which detects headers, footers, body text,
numbered lists, and segmentation into articles.

Physical Layout Analysis is essential to enable an
OCR engine to process images of arbitrary pages, such
as from books, magazines, journals, newspapers,
letters, and reports. Methods for physical layout
analysis fall roughly into two categories:

Bottom-up methods are both the oldest [1] and more
recently published [2,3] methods. They classify small
parts of the image (pixels, groups of pixels, or
connected components), and gather together like types
to form regions. The key advantage of bottom-up
methods is that they can handle arbitrarily shaped
regions with ease. The key disadvantage is that they
struggle to take into account higher-level structures in
the image, such as columns. This often leads to over-
fragmented regions.

Top-down methods [4] cut the image recursively in
vertical and horizontal directions along whitespaces
that are expected to be column boundaries or paragraph
boundaries. Although top-down methods have the

advantage that they start by looking at the largest
structures on the page, they are unable to handle the
variety of formats that occur in many magazine pages,
such as non-rectangular regions and cross-column
headings that blend seamlessly into the columns below.

A third type of method [5-7] is based on analysis of
the whitespace in an image. This solves some of the
flaws in the recursive top-down methods, by finding
gaps between columns by a bottom-up analysis of the
gaps, looking explicitly for white rectangles. These
algorithms mostly still suffer from the problem of being
unable to handle non-rectangular regions.

2. Page layout via tab-stop detection

When a page is laid out, either by a professional
publishing system, or by a common word processor, the
regions of a page are bounded by tab-stops. The
margins, column edges, indentation, and columns of a
table are all placed at fixed x-positions at which edges
or centers of text lines are
aligned vertically. Tab-stops
distinguish tables from body
text, and they also bound
rectangular non-column
elements, such as inset
images and pull-out quotes.

The tab-stops in the
example of Fig. 1 are the
column boundaries with an
additional tab-stop for the
paragraph indentation that is
not required for finding the
page layout. The non-rectangular inset image, typically,
strays outside of the column boundaries.

In some sense, white rectangles match tab-stops, but
white rectangles may be disrupted by background noise
or background images. Also the ends of white
rectangles do not match the ends of the region bounded
by the tab-stops, because the white rectangles run on
into the perpendicular whitespace.

Fig.1. Input image.

2009 10th International Conference on Document Analysis and Recognition

978-0-7695-3725-2/09 $25.00 © 2009 IEEE 242
DOI 10.1109/ICDAR.2009.257

The proposed algorithm is similar to the whitespace
rectangle methods in that it uses a bottom-up method to
find a top-down structure, but instead of finding the
space between columns, it looks for the tab-stops that
mark their edges, and, through further combination of
bottom-up and top-down methods, copes easily with
non-rectangular regions.

There are for main phases: preprocessing, in which
bottom-up morphological and connected component
analysis form initial hypotheses over the local data
types; bottom-up tab-stop detections; finding the
columns layout; and finally applying the column layout
to create an ordered set of typed regions. These phases
will be detailed in sections 3-6.

3. Preprocessing

The aim of the preprocessing step is to identify line
separators, image regions, and separate the remaining
connected components into likely text components and
a smaller number of uncertain type.

Fig.2. (a) Vertical lines, (b) Image elements.

Starting with the image of Fig. 1, the morphological
processing from Leptonica [8] detects the vertical lines
shown in Fig. 2(a) and the image mask shown in Fig.
2(b). These detected elements are subtracted from the
input image before passing the cleaned image to
connected component analysis.

The connected components (CCs) are filtered by
width, w, and height, h into small, medium, and large
sizes as follows: CCs with h < 7 (at 300ppi) are small.
The 75th percentile of the heights of the remainder, h75,
is computed, and CCs with h < h75/2 are small; h > 2h75

or w > 8h75 are large, and the rest are medium.
This filtration is important, since small CCs (noise

or diacriticals) and large non-text CCs, (line drawings,
logos, or frames) are likely to confuse the text-line
algorithms, but large text headings are important to
reading order detection. Large CCs are considered text
at this stage if there is a left or right neighbor that has a
similar stroke width. On “stressed” fonts, the stroke

width is greater on vertical
lines than on horizontal lines,
so stroke width is calculated
separately in both directions.
Stroke width is calculated
from horizontal and vertical
local maxima of the distance
function on the binary image
of the CC. Fig. 3 shows the
CCs are filtered as medium
or large text.

4. Finding tab positions as line segments

The process of finding tab-stop line segments has
several major sub-steps: candidate tab-stop CCs that
look like they may be at the edge of a text region are
found and then grouped into tab-stop lines, then
connections between tab-stop lines are found, enabling
removal of false positives.

4.1. Finding candidate tab-stop components

The initial candidate tab-stop CCs are found by a
radial search starting at every filtered CC from
preprocessing. Assuming that the CC is at a tab-stop,
the search looks for aligned neighbors and neighbors in
the gutter where there should be a space. Each CC is
processed independently and marked according to
whether it is a candidate left tab, right tab or neither.
Fig. 4(a) illustrates the candidate tab-stop CCs.

Fig.4. (a) Candidate tab-stop components
(b) Fitted tab lines and traces connections.

4.2. Grouping candidate tab components

Candidate tab CCs are grouped into lines, and,
where there are sufficiently many CCs in a group, they
are kept. A least median of squares algorithm is used to
fit a line to the appropriate (left or right) edge of each
CC in a group. After finding all tab-stop line segments,
all the lines are refitted to the page-mean direction,

Fig.3. Filtered CCs

2009 10th International Conference on Document Analysis and Recognition

978-0-7695-3725-2/09 $25.00 © 2009 IEEE 243
DOI 10.1109/ICDAR.2009.257

such that all the member tab CCs fall to one side of the
line segment.

4.3. Tracking text lines to connect tab stops

The next step connects tab-stops by tracking text
lines from one tab-stop to another. Closely adjacent,
vertically overlapping CCs qualify, but large gaps
cannot be jumped. Tab-stops that have a text-line
connecting them are associated with each other, as
being likely opposite sides of a text column. Fig. 4(b)
shows the tab-stop lines and connecting text lines. Tab-
stop lines that have no connection are discarded.

The most frequently occurring widths of the text
lines connecting tab stops are recorded for use in
finding the column layout.

4.4. Cleaning up tab stop ends

The final step attempts to
make connected tab lines end
at the same y coordinate, by
allowing the ends to move
between the last member CC
whose edge was used for the
tab line, and the first non-
member CC that the line
intersects. Fig. 5 shows the
final tab line segments.

After construction of the
tab stops, the CCs are re-
classified, as “Text” or
“Unknown” using the same text-line tracing algorithm
as was used above to find connections between tab
stops. If a group of CCs of significant width form a text
line, then they are classified as text. Artificial image
CCs of about the same size as the body-text CCd are
created from the image mask from the morphological
preprocessing.

5. Finding the column layout

The next major step is to find the column layout of
the page. All the rest of the steps make use of the
Column Partition (CP) objects which are created now.

Scanning the CCs from left to right and top to
bottom, runs of similarly classified (text, image, or
unknown) CCs are gathered into CPs, subject to the
constraint that no CP may cross a tab stop line. Fig. 6
shows the result of this process. A collection of CPs
from a single horizontal scan are stored in a Column
Partition Set (CPset).

Each CPset is potentially
a division of the page into
columns at that vertical
position. Finding the
column layout is therefore a
process of finding an
optimal set of CPsets that
best "explains" (see below)
all the CPsets on the page,
but first some definitions:

A good CP either
touches a tab line on both
vertical edges of its
bounding box, or its width is
close to a frequently occurring width. (See 4.3.)

The coverage of a CPset is the total width of all the
good CPs that it contains.

CPset A is better than CPset B if A has greater
coverage, or equal coverage, but more good CPs, or
equal good CPs, but more total CPs.

CPset A explains set B unless one or more of the
following are true:
1. The edge of one of B's CPs lies outside of all of A's
CPs. This is not allowed, as it shows that B has more
text than A.
2. The edges of one of B's CPs fall in different CPs of
A, and the width of the B CP is a common one. This
means that A has split a column of common width.
3. The right edge of one of B's CPs falls in the same A
CP as the left edge of the next B CP, and the B CPs are
of roughly the same width. It looks like A has a
different number of columns to B. The same-width
condition allows A to explain B with a pull-out.
4. Both edges of two CPs of B fall in the same CP of A.
This means that A has merged two columns of B.

Note that the two edges of
one of B's CPs are allowed to
fall into two CPs of A, as
long as the width is not a
common one. This allows
headings that merge columns
in B to be explained by A.

A list of column
candidates is made from the
set of CPsets on the page,
ordered best first, and with
duplicates eliminated by the
A explains B rules above. In
this process, all image CPs are ignored.

After the initial candidates are made, they are
improved by adding new CPs and widening existing
CPs, by using the edge of a CP in a different CPSet
while widening doesn't cause overlap of CPs.

Fig.6. Column
Partitions (CPs)

Fig.7. Columns.

Fig.5. Cleaned
tab-stops.

2009 10th International Conference on Document Analysis and Recognition

978-0-7695-3725-2/09 $25.00 © 2009 IEEE 244
DOI 10.1109/ICDAR.2009.257

An iterative process then labels the longest segment
of consecutive (allowing for a very small region of
failure) page y-coordinates that is explained by one of
the column candidates. Fig. 7 shows the result of this
process.

6. Finding the regions

After the columns are found, CPs are given a type
according to how many columns they span. CPs within
a single column are flowing, partitions that touch more
than one column, but do not span to the outer edges of
either are pull-out, and partitions that completely span
more than one column are heading.

6.1. Create flows of CPs

Each CP chooses its best matching upper and lower
partner, being the vertically nearest CP that overlaps
horizontally. Since each CP registers itself with its
chosen partner, each CP may have zero or more
registered upper and lower partners.

The size of the list of registered partners is forced to
become zero or one for each of upper and lower, using
the following rules in order:
1. Type. If there are multiple types, text can only stay
with its own (exact) type, whereas image can stay with
any other image type.
2. Transitive partner shortcuts are broken. If A has 2
partners B and C, and also B has C as a partner in the
same direction, then delete C as a partner of A, leaving
a clean chain A-B-C. Also if A has a partner B, and B
has a partner A in the same direction, break the cycle.
3. (Text only) If A still has 2 partners B, C, chase B
and C's partners to see which has the longest chain.
Delete from A the partner that has the shortest chain,
and convert the type of the shortest chain to pull-out.
4. (Image only) Choose the partner CP with the largest
horizontal overlap.

All CPs now have 0 or 1
partners. Even so, (re)run
rule 1 above. This purifies all
chains of text to a single type
and splits text chains from
image chains. Image chains
are purified by setting all CPs
in a chain to the most general
type in the chain. Fig. 8
shows the final typed CPs,
where flowing text is blue,
heading text is cyan, heading
image is magenta, and pull-
out image is orange.

Chains of text CPs are further divided into groups of
uniform line-spacing, which make text blocks. Now
each chain of CPs represents a candidate region, but
the regions have to be ordered.

6.2. Reading order determination

Recall that image and text partitions are typed as
one of 3 possibilities: flowing, pull-out, and heading.
Also, the page is divided into sections of a consistent
column layout. With this information, a reasonable
reading order drops out of a few simple rules:
1. Flowing blocks follow by y position within a
column.
2. Pull-out blocks follow by y position in an imaginary
column between the real columns that they touch.
3. A heading spans multiple columns and follows
anything that is above it in the columns spanned, or
between them. Anything that lies in the same columns
below the heading follows after it.
4. A change in column layout works just like a heading.
Anything in any columns that are changed (or between
them) goes before anything in the new columns.
Unchanged columns are unaffected by a change in
column layout.
5. Between headings, the content of columns is ordered
from left to right.

6.3. Find the polygon boundary for each region

For simplicity of implementation, the region
polygons are isothetic: i.e. edges alternate between
being horizontal and parallel
to the mean tab line
(Approximately vertical.)
The polygon edges are
chosen to minimize the
number of vertices, while
satisfying the constraint that
all CPs are contained within
their region polygon, and no
CP from another region
intersects. Fig. 9 shows the
final blocks created for the
input image of Fig. 1.

7. Testing and results

The algorithm described herein is implemented in
C++, and the source code is available as part of the
Tesseract open source OCR system [9,10]. It runs on a
typical 8MPixel image in approximately 1 second on a
3.4 GHz Pentium 4.

Fig.8. Typed
partition chains.

Fig.9. Final blocks.

2009 10th International Conference on Document Analysis and Recognition

978-0-7695-3725-2/09 $25.00 © 2009 IEEE 245
DOI 10.1109/ICDAR.2009.257

Fig.10. Results on some of the ICDAR2007 set.

Properly testing page layout analysis is a difficult
problem [11] with very little publicly available ground-
truth for complex magazine pages. The UNLV test set
[12], only measures text regions, and counts errors
unless figure captions are placed after all the body text.

The ICDAR page layout analysis competitions
provide better measurement of overall accuracy, and
the results of this algorithm appear in the 2009
competition [13]. Some graphical results are shown in
Fig. 10 and numerical comparisons with the entrants in
the ICDAR 2007 competition are shown in Table 1.
The results in Table 1 are computed on only the 2007
test set, and the author would like to thank Apostolos
Antonocopoulos for providing these results. For details
on the testing methodology, see references [11] and
[13].

Table 1. Results on the ICDAR 2007 set.
Method Noise Sep Text Image Overall

PRImA Metric
2007-Besus 86.8% 76.9% 37.4% 42.5% 35.9%
2007-TH1 68.0% 79.7% 76.1% 46.2% 67.6%
2007-TH2 67.6% 79.6% 72.9% 48.4% 65.7%
Tesseract 65.6% 74.1% 72.1% 55.3% 68.4%

F-Measure
2007-Besus 62.9% 76.2% 95.8% 57.2% 90.2%
2007-TH1 79.2% 80.7% 91.9% 72.1% 88.2%
2007-TH2 79.2% 80.6% 92.3% 72.4% 88.6%
Tesseract 79.2% 70.9% 93.3% 82.0% 91.3%

Recall
2007-Besus 65.7% 71.7% 94.9% 67.0% 88.2%
2007-TH1 65.6% 79.5% 96.9% 66.4% 89.8%
2007-TH2 65.6% 79.5% 97.2% 66.9% 90.2%
Tesseract 65.6% 81.4% 97.9% 76.5% 93.8%

Precision
2007-Besus 60.4% 81.3% 96.7% 50.0% 92.2%
2007-TH1 100.0% 81.9% 87.4% 79.0% 86.7%
2007-TH2 100.0% 81.7% 87.9% 79.0% 87.0%
Tesseract 100.0% 62.8% 89.0% 88.3% 88.9%

10. Conclusion and further work

Tab-stops make an interesting and useful alternative
to white rectangles for finding the column structure of a

page. Combining the top-down concept of column
structure with bottom-up classification methods enables
page layout analysis to easily handle the complex non-
rectangular layouts of modern magazine pages without
losing sight of the “bigger picture” that often happens
when bottom-up methods are used alone.

The algorithm described has no table detection or
analysis, but the tab-stops make particularly useful
features for both, so table analysis will be added in the
future.

11. References

[1] F. Wahl, K. Wong, R. Casey, "Block segmentation and
text extraction in mixed text/image documents," Computer
Graphics and Image Processing, 20, 1982, pp375-390.
[2] M. Chen, X. Q. Ding, "Unified HMM-based Layout
Analysis Framework and Algorithm,” SCI CHINA Ser F,
46(6), Dec. 2003, pp401-408.
[3] S.P. Chowdhury, S. Mandal, A.K. Das, B. Chanda,
"Segmentation of Text and Graphics from Document
Images," Proc. of the 9th Int. Conf. on Document Analysis
and Recognition, IEEE, Curitiba, Brazil, Sep 2007, pp619-
623.
[4] G. Nagy, S.C. Seth, "Hierarchical Representation of
Optically Scanned Documents" Proc. 7th Int. Conf. on
Pattern Recognition, Montreal, Canada, 1984, pp347-349.
[5] H.S. Baird, S.E. Jones, S.J. Fortune, "Image
Segmentation by Shape-directed Covers," Proc. 10th Int.
Conference on Pattern Recognition, IEEE Atlantic City, NJ,
1990, pp820-825.
[6] T. Pavlidis, J. Zhou, "Page Segmentation and
Classification," CVGIP: Graphical Models and Image
Processing, 54(6), November 1992, pp484-496.
[7] T.M. Breuel, "Two Geometric Algorithms for Layout
Analysis," Proc. of the 5th Int. Workshop on Document
Analysis Systems V, Springer-Verlag 2002, pp188-199.
[8] Leptonica image processing and analysis library.
http://www.leptonica.com.
[9] R. Smith. “An overview of the Tesseract OCR Engine.”
Proc 9th Int. Conf. on Document Analysis and Recognition,
IEEE, Curitiba, Brazil, Sep 2007, pp629-633.
[10] The Tesseract open source OCR engine.
http://code.google.com/p/tesseract-ocr.
[11] A. Antonacopoulos, B. Gatos, D. Bridson,
“ICDAR2007 Page Segmentation Competition,” Proc 9th Int.
Conf. on Document Analysis and Recognition, IEEE,
Curitiba, Brazil, Sep 2007, pp1279-1283.
[12] UNLV ISRI OCR testing toolkit and database
http://www.isri.unlv.edu/ISRI/OCRtk.
[13] A. Antonacopoulos et. al. “ICDAR2009 Page
Segmentation Competition,” Proc 10th Int. Conf. on
Document Analysis and Recognition, IEEE, Barcelona,
Spain, Jul 2009.

