
Fast prime field Gröbner basis computation

Bjarke Hammersholt Roune
Department of Mathematics

University of Kaiserslautern

Kaiserslautern, February 14, 2013

Bjarke Hammersholt Roune Fast prime field Gröbner basis computation

Outline

Part I Relevant background on F4
The F4 Algorithm
ABCD decomposition
Martani’s modification

Part II What I have been doing
The story of F4 in Mathic
Matrix construction

Part III The future

Bjarke Hammersholt Roune Fast prime field Gröbner basis computation

Part I

The F4 algorithm

Based on “A New Efficient Algorithm for Computing Gröbner
Bases (F4)” by Jean-Charles Faugère

F4 is like classic reduction, but in a matrix.

polynomial

reduced polynomial

matrix

reduced matrix

polynomial
reduction

row
reduction

A polynomial reduction

2x2 − y : (x − 1, y + 2)

2x2 − y 2x− y
2x(x− 1) = 2x2 − 2x

2x− y −y + 2
2(x− 1) = 2x− 2

−y + 2 4
(−1)(y + 2) = −y − 2

Let us do that in a matrix

2x2 − y : (x − 1, y + 2)

2x2 − y 2x− y
2x(x− 1) = 2x2 − 2x

2x− y −y + 2
2(x− 1) = 2x− 2

−y + 2 4
(−1)(y + 2) = −y − 2




1 −1 0 0
0 1 0 −1
0 0 1 2
2 0 −1 0




x2 x y 1
x2 − x
x− 1
y + 2

2x2 − y

2x2 − y : (x − 1, y + 2)

2x2 − y 2x− y
2x(x− 1) = 2x2 − 2x




1 −1 0 0
0 1 0 −1
0 0 1 2
2 0 −1 0




x2 x y 1
x2 − x
x− 1
y + 2

2x2 − y




1 −1 0 0
0 1 0 −1
0 0 1 2
0 2 −1 0




x2 x y 1
x2 − x
x− 1
y + 2

2x− y

2x2 − y : (x − 1, y + 2)




1 −1 0 0
0 1 0 −1
0 0 1 2
0 2 −1 0




x2 x y 1
x2 − x
x− 1
y + 2

2x− y

x2 x y 1
x2 − x
x− 1
y + 2

−y + 2

2x− y −y + 2
2(x− 1) = 2x− 2




1 −1 0 0
0 1 0 −1
0 0 1 2
0 0 −1 2




2x2 − y : (x − 1, y + 2)

x2 − x
x− 1
y + 2

−y + 2




1 −1 0 0
0 1 0 −1
0 0 1 2
0 0 −1 2




x2 − x
x− 1
y + 2

4




1 −1 0 0
0 1 0 −1
0 0 1 2
0 0 0 4




−y + 2 4
(−1)(y + 1) = −y − 2

x2 x y 1 x2 x y 1

What about that top arrow?

polynomial

reduced polynomial

matrix

reduced matrix

polynomial
reduction

row
reduction

How to construct the matrix before doing the reduction?

2x2 − y : (x − 1, y + 2)

2x2 − y 2x− y
2x(x− 1) = 2x2 − 2x

2x− y −y + 2
2(x− 1) = 2x− 2

−y + 2 4
(−1)(y + 2) = −y − 2




1 −1 0 0
0 1 0 −1
0 0 1 2
2 0 −1 0




x2 x y 1
x2 − x
x− 1
y + 2

2x2 − y

2x2 − y : (x − 1, y + 2)

Start with 2x2 − y

[

2 −1

]x2 y

2x2 − y

2x2 − y : (x − 1, y + 2)

x(x − 1) = x2 − x reduces x2

[

2 −1

]x2 y

2x2 − y

[
1 −1 0
2 0 −1

]x2 x y

x2 − x
2x2 − y

2x2 − y : (x − 1, y + 2)

x − 1 reduces x

[
1 −1 0
2 0 −1

]x2 x y

x2 − x
2x2 − y




1 −1 0 0
0 1 0 −1
2 0 −1 0




x2 x y 1

x2 − x
x− 1

2x2 − y

2x2 − y : (x − 1, y + 2)

y + 2 reduces y




1 −1 0 0
0 1 0 −1
2 0 −1 0




x2 x y 1

x2 − 1x
x− 1

2x2 − y




1 −1 0 0
0 1 0 −1
0 0 1 2
2 0 −1 0




x2 x y 1
x2 − x
x− 1
y + 2

2x2 − y

2x2 − y : (x − 1, y + 2)

We have no reducer for 1




1 −1 0 0
0 1 0 −1
0 0 1 2
2 0 −1 0




x2 x y 1
x2 − x
x− 1
y + 2

2x2 − y




1 −1 0 0
0 1 0 −1
0 0 1 2
2 0 −1 0




x2 x y 1
x2 − x
x− 1
y + 2

2x2 − y

2x2 − 2x : x − 1

F4 unnecessarily adds the row x − 1.

2x2 − 2x 0
2x(x− 1) = 2x2 − 2x




1 −1 0
0 1 −1
2 −2 0




x2 x 1
x2 − x
x− 1

2x2 − 2x

There will be n unnecessary rows for xn+1 − xn : x − 1.

2x2 − 2x : x − 1

F4 unnecessarily adds the row x − 1.

2x2 − 2x 0
2x(x− 1) = 2x2 − 2x




1 −1 0
0 1 −1
2 −2 0




x2 x 1
x2 − x
x− 1

2x2 − 2x

There will be n unnecessary rows for xn+1 − xn : x − 1.

You now understand F4

polynomial

reduced polynomial

matrix

reduced matrix

polynomial
reduction

row
reduction

Benchmark for homogeneous cyclic-8 mod 101

∑
classic reducers or

reducer time/s
∑

matrix top rows

classic 104.1 6,828,742
matrix-based 85.0 7,000,845

Main point: About same speed for full Gröbner basis computation.

Optimization: bunch the S-pair reductions together

p1 p2 p3

p1
p2
p3

combine
matrices

many smaller matrices/reductions ...

... turn into one larger matrix

Optimization: bunch the S-pair reductions together

x2 − xy 2 : xy − 1 and x3 − 2xy 2 : xy − 1

The two reductions can share the y(xy − 1) = xy2 − y row.




0 0 1 −1
0 1 −1 0
1 0 −2 0




x3 x2 xy2 y
xy2 − y
x2 − xy2

x3 − 2xy2

[
0 1 −1
1 −1 0

]x2 xy2 y

xy2 − y
x2 − xy2

[
0 1 −1
1 −2 0

]x3 xy2 y

xy2 − y

x3 − 2xy2

take union of rows
and of columns

Optimization: bunch the S-pair reductions together

p1 p2 p3

p1
p2
p3

r1 r2 r3

combine
matrices

many smaller matrices/reductions ...

... turn into one larger matrix

fewer than
r1 + r2 + r3

rows

Benchmark for homogeneous cyclic-8 mod 101

∑
classic reducers or

reducer time/s
∑

matrix top rows

classic 104.1 6,828,742
many smaller matrices 85.0 7,000,845

fewer bigger matrices 4.3 76,149

Benchmark for homogeneous cyclic-8 mod 101

∑
classic reducers or

reducer time/s
∑

matrix top rows

classic 104.1 6,828,742
many smaller matrices 85.0 7,000,845
fewer bigger matrices 4.3 76,149

Outline

Part I Relevant background on F4
The F4 Algorithm
ABCD decomposition
Martani’s modification

Part II What I have been doing
The story of F4 in Mathic
Matrix construction

Part III The future

Bjarke Hammersholt Roune Fast prime field Gröbner basis computation

Part I

ABCD decomposition

Based on “Parallel Gaussian Elimination for Gröbner bases
computations in finite fields” by Jean-Charles Faugère and Sylvain
Lachartre.

Move columns without a reducer/pivot to the right

has reducer no reducer


1 7 9 0 0 6
0 0 1 4 0 0
0 0 0 0 1 0
3 1 0 3 2 0
0 5 0 0 4 0







1 9 0 7 0 6
0 1 0 0 4 0
0 0 1 0 0 0
3 0 2 1 3 0
0 0 4 5 0 0




ABCD decomposition

0

A

C

B

D

has reducer no reducer

Faugère-Lachartre algorithm

0

A

C

B

D

0

C

B′

D

0

0

B′0

0 D′

decompose into A,B,C,D reduce A by itself

reduce C reduce D′ by itself

1

Compute the right columns in parallel

We do not need to modify the left columns.
The right column computations are independent of each other.

thread 1
thread 2

thread 3

Subdivide the matrices into blocks

The idea is that computations on blocks fit in the CPU’s cache.

Benchmark for Katsura-n mod 65521

Katsura-11 Katsura-12 Katsura-13

Magma 19.5s 151.2s 1091.4s
F-L 2.9s 19.5s 149.6s

— Faugère-Lachartre

The F-L time is only matrix reduction — e.g. not construction.
The Magma time includes everything.

Outline

Part I Relevant background on F4
The F4 Algorithm
ABCD decomposition
Martani’s modification

Part II What I have been doing
The story of F4 in Mathic
Matrix construction

Part III The future

Bjarke Hammersholt Roune Fast prime field Gröbner basis computation

Part I

Martani’s modification

Reminder: Faugère-Lachartre algorithm

0

A

C

B

D

0

C

B′

D

0

0

B′0

0 D′

decompose into A,B,C,D reduce A by itself

reduce C reduce D′ by itself

1

Fayssal Martani’s modifications

0

A

C

B

D

0

B′

0 D′

decompose into A,B,C,D reduce C

reduce D′ by itself

A

Compute the bottom rows in parallel

We do not need to modify the top rows.
The bottom row computations are independent of each other.

thread 1
thread 2
thread 3

Benchmark for reducing matrices produced by F4

Martani/s Faugère-Lachartre/s

Katsura-13, matrix 6 12.6 31.6
Katsura-13, matrix 11 1.5 38.0
minrank-996, matrix 7 548 1354

— Martani

Martani uses: Matrix blocking

Modular arithmetic

Let Np
def
= {0, 1, . . . , p − 1} and a, b ∈ Np. Then

a� b ∈ Np such that a� b ≡ ab mod p

a⊕ b ∈ Np such that a⊕ b ≡ a + b mod p

Unfortunately:
� is much slower than multiplication.
⊕ is much slower than addition.

Modular arithmetic

Let Np
def
= {0, 1, . . . , p − 1} and a, b ∈ Np. Then

a� b ∈ Np such that a� b ≡ ab mod p

a⊕ b ∈ Np such that a⊕ b ≡ a + b mod p

Unfortunately:
� is much slower than multiplication.
⊕ is much slower than addition.

Martani uses: Delayed modulus

Let α, β ∈ Nn
p. We want to compute α · β mod p.

Slow: (α1 � β1)⊕ · · · ⊕ (αn � βn)

Fast: (α1β1 + · · ·+ αnβn) mod p

If p < 216 and n < 232 we can do the fast way with 64 bit integers.

Martani uses: Mixed dense/sparse vectors

Suppose two vectors have lots of zero entries.

Slow: Add two sparse format vectors (poorly predicted branch).

Slow: Add two dense format vectors (time wasted on 0 + a = a).

Fast: Add a dense and a sparse vector (if dense fits in cache).

Martani uses: Mixed dense/sparse vectors

Suppose two vectors have lots of zero entries.

Slow: Add two sparse format vectors (poorly predicted branch).

Slow: Add two dense format vectors (time wasted on 0 + a = a).

Fast: Add a dense and a sparse vector (if dense fits in cache).

Martani uses: Mixed dense/sparse vectors

Suppose two vectors have lots of zero entries.

Slow: Add two sparse format vectors (poorly predicted branch).

Slow: Add two dense format vectors (time wasted on 0 + a = a).

Fast: Add a dense and a sparse vector (if dense fits in cache).

Martani’s implementation

Store top rows sparse and active bottom rows dense.

Use delayed modulus for active bottom rows.
Subdivide the matrix into cache-sized blocks.
Use the multiline data structure

thread 1
thread 2
thread 3

Martani’s implementation

Store top rows sparse and active bottom rows dense.
Use delayed modulus for active bottom rows.

Subdivide the matrix into cache-sized blocks.
Use the multiline data structure

thread 1
thread 2
thread 3

Martani’s implementation

Store top rows sparse and active bottom rows dense.
Use delayed modulus for active bottom rows.
Subdivide the matrix into cache-sized blocks.

Use the multiline data structure

thread 1
thread 2
thread 3

Martani’s implementation

Store top rows sparse and active bottom rows dense.
Use delayed modulus for active bottom rows.
Subdivide the matrix into cache-sized blocks.
Use the multiline data structure

thread 1
thread 2
thread 3

Outline

Part I Relevant background on F4
The F4 Algorithm
ABCD decomposition
Martani’s modification

Part II What I have been doing
The story of F4 in Mathic
Matrix construction

Part III The future

Bjarke Hammersholt Roune Fast prime field Gröbner basis computation

Part II

The story of F4 in Mathic

Things experts have told me about F4

It is very difficult to implement F4 and get a good result.
I tried but never managed to get F4 to work as well as I
had hoped.

Things experts have told me about F4

However implementing F4 usually fails in terms of perfor-
mance (I wasn’t successful until now). We don’t think any
more, that it is an good algorithm, but it has very decent
implementations. Allan Steel (magma) told us, he needed
six years for his implementation.

Things experts have told me about F4

So, you want to write a fast implementation of F4? Many
people have tried that and failed. What makes you think
that you can do it?

So what’s the secret?

A conversation I had with Faugère

Me: What is the great unpublished secret of F4?

Faugère: There is no secret.

Me: Thanks.

A conversation I had with Faugère

Me: What is the great unpublished secret of F4?

Faugère: There is no secret.

Me: Thanks.

A conversation I had with Faugère

Me: What is the great unpublished secret of F4?

Faugère: There is no secret.

Me: Thanks.

What’s another name for this?

0

A

C

B

D

0

B′

0 D′

decompose into A,B,C,D reduce C

reduce D′ by itself

A

The great secret of F4

Gaussian elimination with pivoting

Delayed modulus

Mixed sparse/dense vector addition

Turns out Faugère was right.

The great secret of F4

Gaussian elimination with pivoting

Delayed modulus

Mixed sparse/dense vector addition

Turns out Faugère was right.

I could not believe it!

I whipped up a prototype for matrix reduction using

Gaussian elimination with pivoting

Delayed modulus

Mixed sparse/dense vector addition

It was faster than Faugère-Lachartre’s implementation!
Comparable to Martani’s — slower for few cores, faster for many.

I could not believe it!

I whipped up a prototype for matrix reduction using

Gaussian elimination with pivoting

Delayed modulus

Mixed sparse/dense vector addition

It was faster than Faugère-Lachartre’s implementation!
Comparable to Martani’s — slower for few cores, faster for many.

I still did not believe it

I extended my prototype to a simple F4 implementation in Mathic.

Benchmark on 2 cores for homogeneous cyclic-n mod 101

threads cyclic-8/s

old Mathic 1 11.1
old Mathic 2 8.7s
old Magma 2.17-9 1 8.9s

That was encouraging, so I continued the work.

I still did not believe it

I extended my prototype to a simple F4 implementation in Mathic.

Benchmark on 2 cores for homogeneous cyclic-n mod 101

threads cyclic-8/s

old Mathic 1 11.1
old Mathic 2 8.7s
old Magma 2.17-9 1 8.9s

That was encouraging, so I continued the work.

Magma 2.17-9 is from 2011. Old Mathic is from October 2012.
Both Mathic and Magma are faster today.

Benchmark on 4 cores for homogeneous cyclic-n mod 101

threads cyclic-8/s cyclic-9/s

Mathic 1 4.3 683
Magma 2.19-3 1 3.4 726
Singular 3-1-4 1 36.6 11,072

Mathic 8 1.4 208
Magma 2.19-3 8 2.6 531

Magma 2.17-9 is from 2011. Old Mathic is from October 2012.
Both Mathic and Magma are faster today.

Benchmark on 4 cores for homogeneous cyclic-n mod 101

threads cyclic-8/s cyclic-9/s

Mathic 1 4.3 683
Magma 2.19-3 1 3.4 726
Singular 3-1-4 1 36.6 11,072

Mathic 8 1.4 208
Magma 2.19-3 8 2.6 531

Benchmark on 48 cores for homogeneous cyclic-n mod 101

threads cyclic-8/s cyclic-9/s

Singular 3-1-5 1 70.6 21,126
Mathic 1 9.4 3,206
Mathic 8 3.6 593
Mathic 32 4.0 300

Outline

Part I Relevant background on F4
The F4 Algorithm
ABCD decomposition
Martani’s modification

Part II What I have been doing
The story of F4 in Mathic
Matrix construction

Part III The future

Bjarke Hammersholt Roune Fast prime field Gröbner basis computation

Part II

Matrix construction

Where the times goes for Mathic

cyclic-9, 1 thread cyclic-9, 32 threads

Matrix construction 34% 36%
Matrix reduction 64% 57%
Everything else < 1% 7%

It was hard to get matrix construction down to about 35%.

Matrix construction in Mathic

2x2 − y : (x − 1, y + 2)

Pending:

2x2 − y

[]

Pending:

x · (x− 1)

[
2 −1

]x2 y

y + 2

Matrix construction in Mathic

2x2 − y : (x − 1, y + 2)

Pending:
[
2 −1

]

Pending:

x · (x− 1)

[
2 −1 0
1 0 −1

]

x2 y

y + 2

x2 y

y + 2

x

x− 1

Matrix construction in Mathic

2x2 − y : (x − 1, y + 2)

Pending:

Pending:

[
2 −1 0
1 0 −1

]x2 y

y + 2

x2 y x

x




2 −1 0 0
1 0 −1 0
0 1 0 2




x− 1

x− 1

1

Matrix construction in Mathic

2x2 − y : (x − 1, y + 2)

Pending:

Pending:

x2 y

x2 y x

x




2 −1 0 0
1 0 −1 0
0 1 0 2
0 0 1 −1




x− 1

1




2 −1 0 0
1 0 −1 0
0 1 0 2




1

Matrix construction in Mathic

2x2 − y : (x − 1, y + 2)

x2 y x


2 −1 0 0
1 0 −1 0
0 1 0 2
0 0 1 −1




1

Now sort column monomials and
permute rows and columns for ABCD decomposition.

Most time-consuming step

Given monomials a, b, what is the column index of ab?

or equivalently

Given a, b ∈ Nn and f :⊆ Nn → N, compute f (a + b).

Most time-consuming step

Given monomials a, b, what is the column index of ab?

or equivalently

Given a, b ∈ Nn and f :⊆ Nn → N, compute f (a + b).

Mathic: Store f as a hash table.

Problem 1: We need a hash function h : Nn → N.

Allan Steel once told Michael Stillman about a neat way to map
monomials to hash values, and Michael Stillman told me.

Allan Steel: Use h(v)
def
= v · p mod 232 for some vector p.

Problem 2: Now lookup is slow because computing h(v) is slow.

Allan Steel: Store h(v) with v .

Problem 3: Now a + b is slow as we need to compute h(a + b).

Allan Steel: Not so, because h(a + b) = h(a) + h(b).

Mathic: Store f as a hash table.

Problem 1: We need a hash function h : Nn → N.

Allan Steel once told Michael Stillman about a neat way to map
monomials to hash values, and Michael Stillman told me.

Allan Steel: Use h(v)
def
= v · p mod 232 for some vector p.

Problem 2: Now lookup is slow because computing h(v) is slow.

Allan Steel: Store h(v) with v .

Problem 3: Now a + b is slow as we need to compute h(a + b).

Allan Steel: Not so, because h(a + b) = h(a) + h(b).

Mathic: Store f as a hash table.

Problem 1: We need a hash function h : Nn → N.

Allan Steel once told Michael Stillman about a neat way to map
monomials to hash values, and Michael Stillman told me.

Allan Steel: Use h(v)
def
= v · p mod 232 for some vector p.

Problem 2: Now lookup is slow because computing h(v) is slow.

Allan Steel: Store h(v) with v .

Problem 3: Now a + b is slow as we need to compute h(a + b).

Allan Steel: Not so, because h(a + b) = h(a) + h(b).

Mathic: Store f as a hash table.

Problem 1: We need a hash function h : Nn → N.

Allan Steel once told Michael Stillman about a neat way to map
monomials to hash values, and Michael Stillman told me.

Allan Steel: Use h(v)
def
= v · p mod 232 for some vector p.

Problem 2: Now lookup is slow because computing h(v) is slow.

Allan Steel: Store h(v) with v .

Problem 3: Now a + b is slow as we need to compute h(a + b).

Allan Steel: Not so, because h(a + b) = h(a) + h(b).

Mathic: Store f as a hash table.

Problem 1: We need a hash function h : Nn → N.

Allan Steel once told Michael Stillman about a neat way to map
monomials to hash values, and Michael Stillman told me.

Allan Steel: Use h(v)
def
= v · p mod 232 for some vector p.

Problem 2: Now lookup is slow because computing h(v) is slow.

Allan Steel: Store h(v) with v .

Problem 3: Now a + b is slow as we need to compute h(a + b).

Allan Steel: Not so, because h(a + b) = h(a) + h(b).

Mathic: Store f as a hash table.

Problem 1: We need a hash function h : Nn → N.

Allan Steel once told Michael Stillman about a neat way to map
monomials to hash values, and Michael Stillman told me.

Allan Steel: Use h(v)
def
= v · p mod 232 for some vector p.

Problem 2: Now lookup is slow because computing h(v) is slow.

Allan Steel: Store h(v) with v .

Problem 3: Now a + b is slow as we need to compute h(a + b).

Allan Steel: Not so, because h(a + b) = h(a) + h(b).

Mathic: Store f as a hash table.

Problem 1: We need a hash function h : Nn → N.

Allan Steel once told Michael Stillman about a neat way to map
monomials to hash values, and Michael Stillman told me.

Allan Steel: Use h(v)
def
= v · p mod 232 for some vector p.

Problem 2: Now lookup is slow because computing h(v) is slow.

Allan Steel: Store h(v) with v .

Problem 3: Now a + b is slow as we need to compute h(a + b).

Allan Steel: Not so, because h(a + b) = h(a) + h(b).

f (a + b) still most time-consuming step

A way to compute f (a + b)

1 Compute c ← a + b and h′ ← h(a) + h(b).

2 For each entry s of f with h(s) = h′, check if s = c .

A faster way to compute f (a + b)

1 Compute h′ ← h(a) + h(b)

2 For each entry s of f with h(s) = h′, check if s = a + b.

Isn’t that just the same thing?

f (a + b) still most time-consuming step

A way to compute f (a + b)

1 Compute c ← a + b and h′ ← h(a) + h(b).

2 For each entry s of f with h(s) = h′, check if s = c .

A faster way to compute f (a + b)

1 Compute h′ ← h(a) + h(b)

2 For each entry s of f with h(s) = h′, check if s = a + b.

Isn’t that just the same thing?

f (a + b) still most time-consuming step

A way to compute f (a + b)

1 Compute c ← a + b and h′ ← h(a) + h(b).

2 For each entry s of f with h(s) = h′, check if s = c .

A faster way to compute f (a + b)

1 Compute h′ ← h(a) + h(b)

2 For each entry s of f with h(s) = h′, check if s = a + b.

Isn’t that just the same thing?

It’s not the same thing!

Don’t do this to check if s = a + b
1 for i = 1, . . . , n: ci ← ai + bi .
2 for i = 1, . . . , n: if si 6= ci , return false

OK (c is never written to memory)
1 for i = 1, . . . , n: if si 6= ai + bi , return false

Good (fewer if’s, unrollable, optimized for true-answer)
1 d ← 0
2 for i = 1, . . . , n: d ← d | (si ˆ (ai + bi)).
3 If d 6= 0, return false

Better: 64 bit integers or SSE can check several entries per step.

Best: Also pack small exponents into fewer bits (for future).

It’s not the same thing!

Don’t do this to check if s = a + b
1 for i = 1, . . . , n: ci ← ai + bi .
2 for i = 1, . . . , n: if si 6= ci , return false

OK (c is never written to memory)
1 for i = 1, . . . , n: if si 6= ai + bi , return false

Good (fewer if’s, unrollable, optimized for true-answer)
1 d ← 0
2 for i = 1, . . . , n: d ← d | (si ˆ (ai + bi)).
3 If d 6= 0, return false

Better: 64 bit integers or SSE can check several entries per step.

Best: Also pack small exponents into fewer bits (for future).

It’s not the same thing!

Don’t do this to check if s = a + b
1 for i = 1, . . . , n: ci ← ai + bi .
2 for i = 1, . . . , n: if si 6= ci , return false

OK (c is never written to memory)
1 for i = 1, . . . , n: if si 6= ai + bi , return false

Good (fewer if’s, unrollable, optimized for true-answer)
1 d ← 0
2 for i = 1, . . . , n: d ← d | (si ˆ (ai + bi)).
3 If d 6= 0, return false

Better: 64 bit integers or SSE can check several entries per step.

Best: Also pack small exponents into fewer bits (for future).

It’s not the same thing!

Don’t do this to check if s = a + b
1 for i = 1, . . . , n: ci ← ai + bi .
2 for i = 1, . . . , n: if si 6= ci , return false

OK (c is never written to memory)
1 for i = 1, . . . , n: if si 6= ai + bi , return false

Good (fewer if’s, unrollable, optimized for true-answer)
1 d ← 0
2 for i = 1, . . . , n: d ← d | (si ˆ (ai + bi)).
3 If d 6= 0, return false

Better: 64 bit integers or SSE can check several entries per step.

Best: Also pack small exponents into fewer bits (for future).

It’s not the same thing!

Don’t do this to check if s = a + b
1 for i = 1, . . . , n: ci ← ai + bi .
2 for i = 1, . . . , n: if si 6= ci , return false

OK (c is never written to memory)
1 for i = 1, . . . , n: if si 6= ai + bi , return false

Good (fewer if’s, unrollable, optimized for true-answer)
1 d ← 0
2 for i = 1, . . . , n: d ← d | (si ˆ (ai + bi)).
3 If d 6= 0, return false

Better: 64 bit integers or SSE can check several entries per step.

Best: Also pack small exponents into fewer bits (for future).

Make better use of the cache

Don’t put column monomials all over memory

Put column monomials together for better cache performance

hash table

monomial

hash table

monomial

Parallel matrix construction in Mathic

Pending:

p1
p2
p3
p4
p5

thread 1 thread 2

thread 1’s (sub)matrix thread 2’s (sub)matrix

At end, combine
the constructed
(sub)matrices

First attempt at parallel hash table scheme

thread 1 thread 2

thread 1’s private hash table thread 2’s private hash table

master hash tablesynchronized
access

synchronized
access

Current parallel hash table scheme

Use C++11’s std::atomic<T> for unsynchronized read access.
Lookups are no slower than for serial code on x86 and x64.

thread 1 thread 2

the one and only hash tableunsynchronized
read access

unsynchronized
read access

Outline

Part I Relevant background on F4
The F4 Algorithm
ABCD decomposition
Martani’s modification

Part II What I have been doing
The story of F4 in Mathic
Matrix construction

Part III The future

Bjarke Hammersholt Roune Fast prime field Gröbner basis computation

Part III

The future

A few near-future improvements for Mathic

Use SSE for matrix construction and reduction
SSE instructions do 4 things simultaneously. Up to 4x the speed.

Subdivide the matrix into blocks
Standard technique. Should be a significant improvement.

Pack small exponents into fewer bits
Standard technique. Should speed up matrix construction.

Do not double memory use while preparing matrix
Permuting rows and columns currently copies for double memory.

A few near-future improvements for Mathic

Use SSE for matrix construction and reduction
SSE instructions do 4 things simultaneously. Up to 4x the speed.

Subdivide the matrix into blocks
Standard technique. Should be a significant improvement.

Pack small exponents into fewer bits
Standard technique. Should speed up matrix construction.

Do not double memory use while preparing matrix
Permuting rows and columns currently copies for double memory.

A few near-future improvements for Mathic

Use SSE for matrix construction and reduction
SSE instructions do 4 things simultaneously. Up to 4x the speed.

Subdivide the matrix into blocks
Standard technique. Should be a significant improvement.

Pack small exponents into fewer bits
Standard technique. Should speed up matrix construction.

Do not double memory use while preparing matrix
Permuting rows and columns currently copies for double memory.

A few near-future improvements for Mathic

Use SSE for matrix construction and reduction
SSE instructions do 4 things simultaneously. Up to 4x the speed.

Subdivide the matrix into blocks
Standard technique. Should be a significant improvement.

Pack small exponents into fewer bits
Standard technique. Should speed up matrix construction.

Do not double memory use while preparing matrix
Permuting rows and columns currently copies for double memory.

GPU computation

GPU’s are great at linear algebra. Often 10-100x CPU speed.

Reducing C here is equivalent to D ← D + CB ′.

0

C

B′

D

0

reduce C

The problem of choice

Gröbner basis performance depends on a great many choices:

Which algorithm (classic,F4,F5,slimgb,...)
Which implementation (Magma,Mathic,Singular,4ti2,...)
Which monomial order (grevlex, lex, glex, block, ...)
What S-pair order (sugar, F5-like, normal, sparse-first,...)
What choice of reducers (oldest, sparsest)
...

There is no always-best set of choices.
Make the wrong choices and you’ll be waiting forever.

Common practice for fitting choices to input
The user does it. Usually, that means it does not happen.

The problem of choice

Gröbner basis performance depends on a great many choices:

Which algorithm (classic,F4,F5,slimgb,...)
Which implementation (Magma,Mathic,Singular,4ti2,...)
Which monomial order (grevlex, lex, glex, block, ...)
What S-pair order (sugar, F5-like, normal, sparse-first,...)
What choice of reducers (oldest, sparsest)
...

There is no always-best set of choices.
Make the wrong choices and you’ll be waiting forever.

Common practice for fitting choices to input
The user does it. Usually, that means it does not happen.

It’s the same thing for Satisfiability (SAT)

Old practice for SAT
Experts come up with and implement heuristics.

Then SATzilla happened. It won competitions by using a better
idea. The paper has 198 citations since 2008.

The better practice for SAT
Machine learning algorithms make the choices.

Let’s try that for Gröbner bases.

It’s the same thing for Satisfiability (SAT)

Old practice for SAT
Experts come up with and implement heuristics.

Then SATzilla happened. It won competitions by using a better
idea. The paper has 198 citations since 2008.

The better practice for SAT
Machine learning algorithms make the choices.

Let’s try that for Gröbner bases.

It’s the same thing for Satisfiability (SAT)

Old practice for SAT
Experts come up with and implement heuristics.

Then SATzilla happened. It won competitions by using a better
idea. The paper has 198 citations since 2008.

The better practice for SAT
Machine learning algorithms make the choices.

Let’s try that for Gröbner bases.

Mathic is open source

https://github.com/broune/mathicgb

https://github.com/broune/mathicgb

The end

Outline

Part I Relevant background on F4
The F4 Algorithm
ABCD decomposition
Martani’s modification

Part II What I have been doing
The story of F4 in Mathic
Matrix construction

Part III The future

Bjarke Hammersholt Roune Fast prime field Gröbner basis computation

