

Smart GWT™ Quick Start Guide

Smart GWT v2.4
November 2010

Smart GWT™ Quick Start Guide
Smart GWT v2.4

Copyright ©2010 and beyond Isomorphic Software, Inc. All rights reserved. The
information and technical data contained herein are licensed only pursuant to a license
agreement that contains use, duplication, disclosure and other restrictions; accordingly, it
is ―Unpublished-rights reserved under the copyright laws of the United States‖ for
purposes of the FARs.

Isomorphic Software, Inc.
101 California Street, Suite 2450
San Francisco, CA 94111
U.S.A.

Web: www.isomorphic.com

Notice of Proprietary Rights
The software and documentation are copyrighted by and proprietary to Isomorphic
Software, Inc. (―Isomorphic‖). Isomorphic retains title and ownership of all copies of the
software and documentation. Except as expressly licensed by Isomorphic in writing, you
may not use, copy, disseminate, distribute, modify, reverse engineer, unobfuscate, sell,
lease, sublicense, rent, give, lend, or in any way transfer, by any means or in any medium,
the software or this documentation.

1. These documents may be used for informational purposes only.

2. Any copy of this document or portion thereof must include the copyright
notice.

3. Commercial reproduction of any kind is prohibited without the express written
consent of Isomorphic.

4. No part of this publication may be stored in a database or retrieval system
without prior written consent of Isomorphic.

Trademarks and Service Marks
Isomorphic Software, Smart GWT, SmartClient and all Isomorphic-based trademarks and
logos that appear herein are trademarks or registered trademarks of Isomorphic Software,
Inc. All other product or company names that appear herein may be claimed as
trademarks or registered trademarks of their respective owners.

Disclaimer of Warranties
THE INFORMATION CONTAINED HEREIN IS PROVIDED ―AS IS‖ AND ALL EXPRESS
OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING
ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT AND ONLY TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Version 2.3 i

Contents

Contents ... i

How to use this guide .. iii

Why Smart GWT? ... v

More than Just Widgets – A Complete Architecturev
Eliminates Cross-Browser Testing and Debuggingv
Complete Solution ... vi
Open, Flexible Architecture .. vi

1. Overview .. 1

Architecture ... 1
Capabilities and Editions of Smart GWT 2

2. Installation ... 3

Starting a New Project .. 3
Adding Smart GWT to an Existing Project..................................... 3
Server Configuration (optional) ... 4

3. Exploring ... 5

Smart GWT Showcase .. 5
Smart GWT Java Doc ... 6
Smart GWT Developer Console .. 6

4. Visual Components .. 11

Component Documentation & Examples 11
Drawing, Hiding, and Showing Components 12
Size and Overflow .. 12
Handling Events .. 13

5. Data Binding .. 15

Databound Components ... 15
Fields ... 16
DataSources .. 20
Customized Data Binding ... 23
DataSource Operations .. 24
DataBound Component Operations ... 26
Data Binding Summary .. 27

6. Layout .. 28

Component Layout ... 28
Container Components .. 30

Contents Smart GWT Quick Start

ii Version 2.3

Form Layout .. 31

7. Data Integration .. 33

DataSource Requests .. 33
Smart GWT Server Framework .. 34
DSRequests and DSResponses ... 35
Request and Response Transformation 35
Criteria, Paging, Sorting and Caching .. 37
Authentication and Authorization ... 38
Relogin .. 39

8. Smart GWT Server Framework .. 40

DataSource Generation .. 40
Server Request Flow ... 43
Direct Method Invocation .. 45
DMI Parameters ... 46
Adding DMI Business Logic ... 46
Returning Data ... 49
Queuing & Transactions ... 50
Queuing, RESTHandler, and SOAs .. 52
Operation Bindings .. 52
Declarative Security.. 54
Dynamic Expressions (Velocity) .. 56
SQL Templating.. 59
SQL Templating — Adding Fields .. 62
Why focus on .ds.xml files? .. 64
Custom DataSources .. 65

9. Extending Smart GWT ... 67

New Components ... 67
New Form Controls .. 68
Switching Theme .. 69
Customizing Themes .. 70

10. Tips .. 72

Beginner Tips ... 72
Architecture Tips .. 72
HTML and CSS Tips ... 73

11. Evaluating Smart GWT .. 75

Which Edition to Evaluate .. 75
Evaluating Performance ... 76
Evaluating Interactive Performance .. 78
Evaluating Editions and Pricing ... 79
A note on supporting Open Source .. 80

Contacts .. 81

Version 2.3 iii

How to use this guide

The Smart GWT Quick Start Guide is designed to introduce you to the
Smart GWT™ web presentation layer. Our goals are:

 To have you working with Smart GWT components and
services in a matter of minutes.

 To provide a conceptual framework, with pointers to more
detail, so you can explore Smart GWT in your areas of
interest.

This guide is structured as a series of brief chapters, each presenting a set
of concepts and hands-on information that you will need to build Smart
GWT-enabled web applications. These chapters are intended to be read in
sequence—earlier chapters provide the foundation concepts and
configuration for later chapters.

This is an interactive manual. You will receive the most benefit from this
guide if you are working in parallel with the Smart GWT SDK—following
the documented steps, creating and modifying the code examples, and
finding your own paths to explore. You may want to print this manual for
easier reference, especially if you are working on a single-display system.

We assume that you are somewhat acquainted with basic concepts of web
applications (browsers, pages, tags), object-oriented programming
(classes, instances, inheritance), and user interface development
(components, layout, events). However, you do not need deep expertise in
any specific technology, language, or system. If you know how to navigate
a file system, create and edit text files, and open URLs in a web browser,
you can start building rich web applications with Smart GWT today.

 If you can’t wait to get started, you can skip directly to
Installation (Chapter 2) to create a Smart GWT project and begin
Exploring (Chapter 3) and Visual Components (Chapter 4). But if
you can spare a few minutes, we recommend reading the
introductory chapters first, for the bigger picture of Smart GWT
goals and architecture.

Thank you for choosing Smart GWT, and welcome.

Version 2.3 v

Why Smart GWT?

Smart GWT helps you to build and maintain more usable, portable,
efficient web applications faster, propelled by an open, extensible stack
of industry-tested components and services.

In this chapter we explore the unique traits of the Smart GWT platform
that set it apart from other technologies with similar purpose.

More than Just Widgets – A Complete Architecture

Smart GWT provides an end-to-end application architecture, from
UI components to server-side transaction handling.

The examples included with Smart GWT demonstrate the simplicity that
can only be achieved by a framework that addresses both server- and
client-side architectural concerns to deliver globally optimal solutions.

Smart GWT‘s UI components are carefully designed to maximize
responsiveness and minimize server load, and Smart GWT‘s server
components are designed around the requirements of high-productivity
user interfaces.

Even if you adopt only part of the Smart GWT solution, you benefit from
an architecture that takes into account the entire problem you need to
solve, not just a part of it. Every integration point in the Smart GWT
platform has been designed with a clear understanding of the
requirements you need to fulfill, and, the solutions built into Smart GWT
provide a ―blueprint‖ for one way of meeting those requirements.

Eliminates Cross-Browser Testing and Debugging

Smart GWT provides a clean, clear, object-oriented approach to UI
development that shields you from browser bugs and quirks.

Why Smart GWT? Smart GWT Quick Start

vi Version 2.3

Even if you need to create a totally unique look and feel, Smart GWT‘s
simplified skinning and branding requires only basic knowledge of page
styling, and you never have to deal with browser layout inconsistencies.

In contrast, lower-level frameworks that provide a thin wrapper over
browser APIs can‘t protect you from the worst and most destructive of
browser issues, such as timing-dependent bugs and memory leaks.

Smart GWT‘s powerful, component-oriented APIs give Smart GWT the
flexibility to use whatever approach works best in each browser, so you
don‘t have to worry about it.

This allows Smart GWT to make a simple guarantee: if there is a cross-
browser issue, it's our problem, not yours.

Complete Solution

Smart GWT offers a complete presentation layer for enterprise
applications: everything you need for the creation of full-featured, robust,
high-productivity business applications.

The alternative—throwing together partial solutions from multiple
sources—creates a mish-mash of different programming paradigms,
inconsistent look and feel, and bizarre interoperability issues that no
single vendor can solve for you.

Whether you are a software vendor or enterprise IT organization, it never
makes sense to build and maintain a UI framework of your own, much
less to own ―glue code‖ tying several frameworks together. A single,
comprehensive presentation framework gives you a competitive
advantage by enabling you to focus on your area of expertise.

Open, Flexible Architecture

Because Smart GWT is built entirely with standard web technologies, it
integrates perfectly with your existing web content, applications, portals,
and portlets. You can build a state-of-the-art application from scratch, or
you can upgrade existing web applications and portals at your own pace,
by weaving selected Smart GWT components and services into your
HTML pages.

By giving you both options, Smart GWT allows you to address a broader
range of projects with a single set of skills. You can even reuse existing
content and portlets by embedding them in Smart GWT user interface
components. Smart GWT allows a smooth evolution of your existing web
applications—you aren‘t forced to start over.

Next, Smart GWT is fully open to integration with other technologies. On
the client, you can seamlessly integrate Java applets, Flash/Flex modules,

Smart GWT Quick Start Why Smart GWT?

Version 2.3

 vii

ActiveX controls and other client technologies for 3D visualization,
desktop integration, and other specialized functionality. On the server,
Smart GWT provides flexible, generic interfaces to integrate with any data
or service tier that you can access through Java code.

Finally, Smart GWT is completely extensible, all the way down to the
web standards on which the system is constructed. If you can‘t do
something ―out of the box,‖ you can build or buy components that
seamlessly extend Smart GWT in any manner you desire.

Version 2.3 1

1. Overview

Architecture

The Smart GWT architecture spans client and server, enabling Rich
Internet Applications (RIAs) that communicate transparently with your
data and service tiers.

Within the web browser, Smart GWT provides a deep stack of services
and components for rich HTML5 / Ajax applications. For those using a
Java-based server, Smart GWT provides a server-side framework that can
be added to any existing Java web application.

The client- and server-based components have a shared concept of
DataSources, which describe the business objects in your application. By
working from a single, shared definition of the data model, client- and
server-side components can coordinate closely to deliver much more
sophisticated functionality ―out of the box‖ than either a standalone
client-based or server-based solution can deliver.

For example, validation rules are declared within the DataSource—these
rules are then enforced client-side by Smart GWT Ajax components, and
server-side by Smart GWT server components. Similarly, the set of valid
operations on an object is declared in a DataSource, and this single
declaration controls client-side behaviors like whether an editing interface
is enabled, and controls security checks on the server for safe enforcement
of business rules.

Server Client

Communication Layer

DataSource Binding

Communication Layer

GUI Rendering & Interactivity

HTTP(S)

Web Browser Application Server

Local
Operations

DataSource
Schema

XMLHttp

Metadata and Operations

Data Providers

Overview Smart GWT Quick Start

2 Version 2.3

Using a DataSource as a shared data definition also greatly reduces
redundancy between your user interface code and server-side code,
increasing agility and reducing maintenance effort.

DataSources can be derived on-the-fly or as a batch process from other,
pre-existing sources of metadata, such as annotated Java Beans and XML
Schema, further reducing system-wide redundancy.

This concept of a DataSource as a shared client-side data definition can be
used with or without the optional Smart GWT Java server components.
However, if you do not use the Smart GWT server components, all server-
side functionality of DataSources must be implemented and maintained
by your team.

Finally, note that Smart GWT does not require that you adopt this entire
architecture. You may choose to integrate with only the layers and
components that are appropriate for your existing systems and
applications.

Capabilities and Editions of Smart GWT

Smart GWT comes in several editions, and the features included in each
of the editions are described on the SmartClient.com website at

http://www.SmartClient.com/product

The portions of this document that make use of Smart GWT server
components require the Pro license or above. None of the features
demonstrated in this document require more than a Pro license.

If you have downloaded the LGPL version, we recommend downloading
the commercial trial version for use during evaluation. Prototypes built on
the commercial edition can be converted to the LGPL version without
wasted effort, but the reverse is not true—using the LGPL version for
evaluation requires you to expend effort implementing functionality that
is already part of the commercial version. For more details, see Chapter
11, Evaluating Smart GWT.

http://www.smartclient.com/product

Version 2.3 3

2. Installation

Starting a New Project

To get started quickly, use the ―built-in-ds‖ sample project included in the
Smart GWT SDK under samples/built-in-ds. Within this directory, see
the README.txt file for instructions to import the project into the Eclipse
IDE or to run the project from the command line using Apache ant.

Several other sample projects are provided that demonstrate integration
with popular Java technologies. However, because it is the simplest and
represents Smart GWT best practices, we recommend starting with the
―built-in-ds‖ project unless you have a specific need to do otherwise. See
Chapter 11, Evaluating Smart GWT, for details.

 Do not start by importing the Showcase project. The
Showcase is designed to host several hundred short-lived mini-
applications and to demonstrate a variety of data binding
approaches. It is not structured like a normal application and does
not represent best practices for normal applications.

Adding Smart GWT to an Existing Project

If you wish to install Smart GWT into a pre-existing project, see the step-
by-step setup guide (http://www.smartclient.com/smartgwtee/javadoc/
com/smartgwt/client/docs/SgwtEESetup.html).

For purposes of this Quick Start, we strongly recommend using one of the
sample projects, which have a pre-configured, embedded server and
database.

http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/docs/SgwtEESetup.html
http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/docs/SgwtEESetup.html

Installation Smart GWT Quick Start

4 Version 2.3

Server Configuration (optional)

 You do not need to perform any server configuration for this
Quick Start. However, if you choose to complete exercises in
later chapters by connecting to an existing database, follow
these additional steps:The Smart GWT Admin Console
provides a graphical interface to configure database
connections, create database tables from DataSource
descriptors, and import test data. Note: Requires Smart
GWT Server framework.

To use the Admin Console, in your gwt.xml file, include the
following imports:

<inherits name="com.smartgwtee.SmartGwtEE"/>

<inherits name="com.smartgwtee.tools.Tools"/>

After adding these imports you then call
com.smartgwtee.tools.client.SCEE.openDataSourceConsole().

IButton adminButton = new IButton("Admin Console");

adminButton.addClickHandler(new ClickHandler() {

 public void onClick(ClickEvent event) {

 com.smartgwtee.tools.client.SCEE.openDataSourceConsole();

 }

});

adminButton.draw();

Note: If you are using Pro, the method to call is
com.smartgwtpro.tools.client.SCPro.openDataSourceConsole().
Make the corresponding adjustment for Power edition as well.

 Other server settings are exposed for direct configuration in
the samples in the server.properties file. The
server.properties file should be in your Eclipse
CLASSPATH. Typically you do this by copying the file to the
top of your src folder, so that Eclipse deploys it into
war/WEB-INF/

classes.

Settings that apply to servlets can be applied via the standard web.xml file.
See the JavaDoc for each servlet for details.

 If you have any problems installing or starting Smart GWT, try the

Smart GWT Developer Forums at forums.smartclient.com.

http://forums.smartclient.com/

Version 2.3 5

3. Exploring

Smart GWT Showcase

To start exploring, visit the Smart GWT EE Showcase at:

http://www.smartclient.com/smartgwtee/showcase/

The Showcase is your best starting point for exploring Smart GWT
capabilities and code. For each example in the Showcase, you can view the
source code by clicking on the View Source button in the upper right side
of the example pane.

A second Showcase, focusing on capabilities common to both the LGPL
and Pro/EE editions, exists at:

http://www.smartclient.com/smartgwt/showcase/

For all samples related to data binding, data loading and data integration,
focus on the samples in the EE Showcase while you are learning. The data
integration samples in the LGPL Showcase focus on concerns that become
irrelevant if you adopt Smart GWT Pro or better.

 To replicate the functionality of a Showcase sample in
your own project, copy and paste code from the View Source
window. Do not copy code from the samples/showcase folder in
the Smart GWT SDK, as this code is designed specifically for
running inside the specialized Showcase environment. The View
Source window shows source code designed for standalone use.

http://www.smartclient.com/smartgwtee/showcase/
http://www.smartclient.com/smartgwt/showcase/

Visual Components Smart GWT Quick Start

6 Version 2.3

Smart GWT Java Doc

The core documentation for Smart GWT is the Smart GWT JavaDoc. You
can access the Smart GWT JavaDoc in any of the following ways:

Online:

smartclient.com/smartgwtee/javadoc/ (client reference)
smartclient.com/smartgwtee/server/javadoc/ (server reference)

In the SDK:

docs/javadoc (client reference)
docs/server (server reference)

There are two special packages in the client reference:

 com.smartgwt.client.docs contains conceptual
overviews covering cross-cutting concerns that apply to
multiple Smart GWT classes and packages. These appear in
JavaDoc as Java Interfaces in order to allow interlinking
with normal JavaDoc reference. Do not import this
package—it is informational only.

 com.smartgwt.client.docs.serverds is reference for all
properties that may be specified in .ds.xml file (see the Data
Binding chapter). Do not import this package—it is
informational only.

Smart GWT Developer Console

The Smart GWT Developer Console is a suite of development tools
implemented in Smart GWT itself. The Console runs in its own browser
window, parallel to your running application, so it is always available in
every browser and in every deployment environment. Features of the
Developer Console include:

 logging & runtime diagnostics

 runtime component inspection

 tracing and profiling

To use the Developer Console, complete the following steps:

1. In your *.gwt.xml file, inherit the module
com.smartgwt.tools.SmartGwtTools.

http://www.smartclient.com/smartgwtee/javadoc/
http://www.smartclient.com/smartgwtee/server/javadoc/

Smart GWT Quick Start Visual Components

Version 2.3

 7

2. Open the Developer Console by typing the URL
javascript:isc.showConsole() into the URL bar of the hosted
mode browser or any standard browser.

The following window will appear:

 Popup blocker utilities and other browser plug-ins may
prevent the Developer Console from appearing. If a pop-up
blocker stops the window from appearing, you must instruct your
popup blocker to allow this window. Refer to the documentation for
your specific browser or blocker utility. Holding the Ctrl key while
opening the console will allow the popup in most systems.

The Results tab of the Developer Console provides:

 Diagnostic messages logged by Smart GWT or your
application code through the Smart GWT logging system.
The Logging Preferences menu allows you to enable
different levels of diagnostics in over 30 categories, from
Layout to Events to Data Binding.

 Smart GWT component statistics. As you move the mouse in
the current application, the ID of the current component
under the mouse pointer is displayed in this area.

Visual Components Smart GWT Quick Start

8 Version 2.3

The Watch pane of the Developer Console displays a tree of Smart GWT
user interface components in the current application. With the built-in-ds
application running, this pane appears as follows:

In the Watch tab, you may:

 Click on any item in the tree to highlight the corresponding
component in the main application window with a flashing,
red-dotted border.

Smart GWT Quick Start Visual Components

Version 2.3

 9

 Right-click on any item in the tree for a menu of operations
on that component.

 Click on the ―hidden,‖ ―undrawn,‖ and ―generated‖
checkboxes to reveal additional components which are not
currently visible, or are internally generated subcomponents
of the Smart GWT components you have created.

The RPC tab shows requests for data issued by Smart GWT components.

Enable this tab by checking the ―Track RPCs‖ checkbox. This tool shows
you:

 Which component issued the request

 What logical type of request it was (such as a DataSource
―update‖ request)

 A logical view of the request and response objects (instead of
the raw HTTP request)

Visual Components Smart GWT Quick Start

10 Version 2.3

The Developer Console is an essential tool for all Smart GWT application
developers and should be open whenever you are working with Smart
GWT. For easy access, you should create a toolbar link to quickly show the
Console:

In Firefox/Mozilla:

1. Show your Bookmarks toolbar if it is not already visible (View >
Toolbars > Bookmarks Toolbar).

2. Go to the Bookmarks menu and pick Manage Bookmarks…

3. Click the New Bookmark button and enter
―javascript:isc.showConsole()” as the bookmark Location, along
with whatever name you choose.

4. Drag the new bookmark into the Bookmarks Toolbar folder.

In Internet Explorer:

1. Show your Links toolbar if it is not already visible (View >
Toolbars > Links).

2. Type ―javascript:isc.showConsole()” into the Address bar.

3. Click on the small Isomorphic logo in the Address bar and drag
it to your Links toolbar.

4. If a dialog appears saying ―You are adding a favorite that may
not be safe. Do you want to continue?” click Yes.

5. If desired, rename the bookmark (―isc” is chosen as a default
name)

 The Developer Console is associated with a single web
browser tab or window at any time. If you have shown the
console for a Smart GWT application in one browser window, and
then open an application in another browser window, you must
close the console before you can show it from the new window.

Smart GWT Quick Start Visual Components

Version 2.3

 11

4. Visual Components

Smart GWT provides two families of visual components for rich web
applications:

 Independent visual components, which you create and
manipulate directly in your applications.

 Managed form controls, which are created and managed
automatically by their ―parent‖ form or editable grid.

This chapter provides basic usage information for the independent
components only. Managed form controls are discussed in more detail in
Chapter 5, Data Binding, and especially Chapter 6, Layout.

Component Documentation & Examples

Visual components encapsulate and expose most of the public capabilities
in Smart GWT, so they have extensive documentation and examples in the
Smart GWT SDK:

Smart GWT Java Doc—For component interfaces (APIs), see
http://www.smartclient.com/smartgwtee/javadoc/com/
smartgwt/client/widgets/package-summary.html.

Form controls are covered in:
http://www.smartclient.com/smartgwtee/javadoc/com/
smartgwt/client/widgets/form/fields/package-summary.html

 Component Code Examples—For live examples of component
usage, see the Smart GWT Showcase:
http://www.smartclient.com/smartgwt/showcase . To view the
code for these examples, click on the ―View Source‖ button in the
upper right corner of the tab.

The remainder of this chapter describes basic management and
manipulation of independent visual components only. For
information on the creation and layout of managed form controls,
see Chapter 5, Data Binding, and Chapter 6, Layout, respectively.

http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/widgets/package-summary.html
http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/widgets/package-summary.html
http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/widgets/form/fields/package-summary.html
http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/widgets/form/fields/package-summary.html
http://www.smartclient.com/smartgwt/showcase

Visual Components Smart GWT Quick Start

12 Version 2.3

Drawing, Hiding, and Showing Components

To cause a Smart GWT component to draw (create its appearance via
HTML), call draw().

Label labelHello = new Label("Hello World");

labelHello.draw();

Components can subsequently be hidden and re-shown as a user
navigates between different parts of the application, using these APIs:

 hide()

 show()

For example, to hide the label that was just drawn:

labelHello.hide();

 UI components built into GWT itself (under the com.google.gwt
package) are typically made visible by calling
RootPanel.get().add(widget). This is not the recommend
approach for Smart GWT widgets. See Chapter 10, Tips, for more
information.

Size and Overflow

The most basic properties for a visual component involve its size and
overflow:

 width

 height

 overflow

Width and height allow either integer values, representing a number of
pixels, or percentage values expressed as a String (such as "50%"),
representing a percentage of the container‘s size (the entire web page, or
another Smart GWT component). For example:

Label labelHello = new Label ("Hello World");

labelHello.setWidth(10);

In this example, the specified width is smaller than the contents of the
label, so the text wraps and ―overflows‖ the specified size of the label. This
behavior is controlled by the overflow property, which is managed
automatically by most components. You may want to change this setting

Smart GWT Quick Start Visual Components

Version 2.3

 13

for Canvas, Label, DynamicForm, DetailViewer, or Layout components,
whose contents you want to clip or scroll instead. To do this, set the
overflow property to ―hidden‖ (clip) or ―auto‖ (show scrollbars when
needed). For example:

import com.smartgwt.client.types.Overflow;

Label labelHello = new Label ("Hello World");

labelHello.setWidth(10);

labelHello.setOverflow(Overflow.HIDDEN);

This will show a 10 pixel wide Label for which the text ―Hello World‖ is
clipped.

In most applications, you will place your components into layout
managers which dynamically determine their size and position. Chapter 6,
Layout, introduces the Smart GWT Layout managers, which you can use
to automatically size, position, and reflow your components at runtime.

Handling Events

Smart GWT applications implement interactive behavior by responding to
events generated by their environment or user actions. You can provide
the logic for hundreds of different events by implementing event
handlers.

The most commonly used Smart GWT events include:

 Click (for buttons and menu items)

 RecordClick (for list grids and tree grids)

 Changed (for form controls)

 TabSelected (for tabsets)

If a Smart GWT component has support for a given type of event, it will
implement a Java interface HasEventNameHandlers such as
HasClickHandlers. These interfaces allow registration of an EventHandler
object that receives an Event object when the event occurs.

For example:

import com.smartgwt.client.widgets.Button;

Button btn = new Button("Click me");

btn.addClickHandler(new ClickHandler() {

 public void onClick(ClickEvent event) {

 // respond to the event here

 }

});

Visual Components Smart GWT Quick Start

14 Version 2.3

The Event object your event handler receives has methods that allow you
to retrieve information about the current event. For example, the
RecordClickEvent has a getRecord()method that allows you to retrieve the
Record that was clicked.

In addition to methods on Event objects, information common to many
types of events is available from static methods on the central
EventHandler class in the package com.smartgwt.client.util.

 For more information on available Smart GWT events, see:

 Smart GWT JavaDoc—Component-specific APIs under
com.smartgwt.client.widgets.

http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/widgets/package-summary.html

5. Data Binding

Databound Components

You can bind certain Smart GWT components to DataSources, which
provide their structure and contents. The following visual components are
designed to display, query, and edit structured data:

Visual
Component

Query &
Display Data

Edit Data

DynamicForm

ListGrid

TreeGrid

Calendar

DetailViewer

TileGrid

ColumnTree

Databound components provide you with both automatic and manual
databinding behaviors. For example:

 Automatic behavior—A databound ListGrid will generate
Fetch operations when a user scrolls the list to view more
records.

 Manual behavior—You can call removeSelectedData() on a
databound ListGrid to perform Remove operations on its
datasource.

 This chapter outlines the client-side interfaces that you may use to

configure databound components and interact with their underlying
DataSources. Chapter 7, Data Integration, outlines the interfaces
for server-side integration of DataSources with your data and
service tiers.

Visual Components Smart GWT Quick Start

16 Version 2.3

Fields

Fields are the building blocks of databound components and DataSources.
There are two types of field definitions:

 Component fields provide presentation attributes for
databound visual components (such as width and alignment
of columns in a table). Component fields are discussed
immediately below.

 DataSource fields provide metadata describing the
objects in a particular datasource (such as data type, length,
and required).

Component fields display as the following sub-elements of your
databound components:

Component Fields

DynamicForm form controls

ListGrid columns & form controls

TreeGrid columns & form controls

Calendar event duration and description

ColumnTree columns & form controls

DetailViewer rows within blocks

TileGrid rows within tiles

CubeGrid (Analytics option) facets (row & column headers)

Smart GWT Quick Start Visual Components

Version 2.3

 17

You can specify the displayed fields of a visual component via the
setFields() method, which takes an array of objects defining the fields
for that component. For example:

ListGrid grid = new ListGrid();

ListGridField salutationField = new ListGridField();

salutationField.setName("salutation");

salutationField.setTitle("Title");

ListGridField firstNameField = new ListGridField();

firstNameField.setName("firstname");

firstNameField.setTitle("First Name");

ListGridField lastNameField = new ListGridField();

lastNameField.setName("lastname");

lastNameField.setTitle("Last Name");

grid.setFields(salutationField,

 firstNameField,

 lastNameField);

grid.draw();

Note that ListGridField actually has shortcut constructors that simplify
this, for example:

ListGridField salutationField =

 new ListGridField ("salutation", "Title");

Try running the example code above. When you load it in your web
browser, you should see a ListGrid that looks like this:

Visual Components Smart GWT Quick Start

18 Version 2.3

The name property of a field is the special key that connects that field to
actual data values. To add records to the fields, add this code to the
ListGrid definition above:

ListGridRecord record1 = new ListGridRecord();

record1.setAttribute("salutation", "Ms");

record1.setAttribute("firstname","Kathy");

record1.setAttribute("lastname","Whitting");

ListGridRecord record2 = new ListGridRecord();

record2.setAttribute("salutation", "Mr");

record2.setAttribute("firstname","Chris");

record2.setAttribute("lastname","Glover");

ListGridRecord record3 = new ListGridRecord();

record3.setAttribute("salutation", "Mrs");

record3.setAttribute("firstname","Gwen");

record3.setAttribute("lastname","Glover");

grid.setData(new ListGridRecord[] {

 record1, record2, record3

});

Now when you load this example, you should see:

 This approach is appropriate mainly for lightweight, read-

only uses (that is, for small, static lists of options). When your
components require dynamic data operations, data-type awareness,
support for large datasets, or integration with server-side
DataSources, you will use the setDataSource() method instead to
bind them to DataSource objects. See DataSources later in this
chapter for details.

Smart GWT Quick Start Visual Components

Version 2.3

 19

The basic properties of field definitions (name, title) in the ListGrid above
are the same as the properties used across other components that support
data binding. For example, this very similar code creates a DynamicForm
for working with the same Records:

import com.smartgwt.client.widgets.form.fields.TextItem;

import com.smartgwt.client.widgets.form.fields.FormItem;

DynamicForm form = new DynamicForm();

TextItem salutationItem = new TextItem();

salutationItem.setName("salutation");

salutationItem.setTitle("Title");

TextItem firstNameItem = new TextItem();

firstNameItem.setName("firstname");

firstNameItem.setTitle("First Name");

TextItem lastNameItem = new TextItem();

lastNameItem.setName("lastname");

lastNameItem.setTitle("Last Name");

form.setFields(new FormItem[] {

 salutationItem, firstNameItem, lastNameItem

});

form.draw();

This will display as:

 For complete documentation of field properties (presentation

attributes) for ListGrid and DynamicForm, see:

 Smart GWT JavaDoc:

com.smartgwt.client.widgets.form.fields

 Smart GWT JavaDoc:

com.smartgwt.client.widgets.grid.ListGridField

http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/widgets/form/fields/package-summary.html
http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/widgets/grid/ListGridField.html

Visual Components Smart GWT Quick Start

20 Version 2.3

DataSources

Smart GWT DataSource objects provide a presentation-independent,
implementation-independent description of a set of persistent data fields.
DataSources enable you to:

 Share your data models across multiple applications and
components, and across both client and server.

 Display and manipulate persistent data and data-model
relationships (such as parent-child) through visual
components (such as TreeGrid).

 Execute standardized data operations (fetch, sort, add,
update, remove) with built-in support on both client and
server for data typing, validators, paging, unique keys, and
more.

 Leverage automatic behaviors including data loading,
caching, filtering, sorting, paging, and validation.

A DataSource descriptor provides the attributes of a set of DataSource
fields. DataSource descriptors can be specified in XML format or created
in Java code. The XML format is interpreted and shared by both client
and server, while DataSources created in Java are used by the client only.

Note that use of the XML format requires the Smart GWT Server. The
Smart GWT Server can also derive DataSources from existing sources of
metadata formats such as Java Beans or SQL schema – see Chapter 8,
Smart GWT Server Framework, for details.

There are four basic rules to creating XML DataSource descriptors:

1. Specify a unique DataSource ID attribute. The ID will be used to
bind to visual components, and as a default name for object-
relational (table) bindings and test data files.

2. Specify a field element with a unique name (unique within the
DataSource) for each field that will be used in a databound UI
component.

3. Specify a type attribute on each field element (see the code
sample that follows for supported data types).

4. Mark exactly one field with primaryKey="true". The primaryKey
field must have a unique value in each data object (record) in a
DataSource. A primaryKey field is not required for read-only
DataSources, but it is a good general practice to allow for future
add, update, or remove data operations.

Smart GWT Quick Start Visual Components

Version 2.3

 21

Following these rules, a DataSource descriptor for personal contacts
might look as follows:

<DataSource ID="contacts">

<fields>

 <field primaryKey="true"

 name="id" hidden="true" type="sequence" />

 <field name="salutation" title="Title" type="text" >

 <valueMap>

 <value>Ms</value>

 <value>Mr</value>

 <value>Mrs</value>

 </valueMap>

 </field>

 <field name="firstname" title="First Name" type="text" />

 <field name="lastname" title="Last Name" type="text" />

 <field name="birthday" title="Birthday" type="date" />

 <field name="employment" title="Status" type="text" >

 <valueMap>

 <value>Employed</value>

 <value>Unemployed</value>

 </valueMap>

 </field>

 <field name="bio" title="Bio" type="text"

 length="2000" />

 <field name="followup" title="Follow up" type="boolean" />

</fields>

</DataSource>

To load this DataSource:

1. Save the XML as contacts.ds.xml in your project, under war/ds.
This is the default location that the Smart GWT server
framework looks for DataSource descriptors.

2. Add a <script> tag to your HTML bootstrap file that uses the
DataSourceLoader servlet to load the DataSource. For example,
in the ―built-in-ds‖ sample project, the bootstrap file is
war/BuiltinDS.html, and there is an existing <script> tag you
can add to. Change it to:

<script src="builtinds/sc/DataSourceLoader?dataSource=supplyItem,

animals,employees,contacts"></script>

In your Java code, access the DataSource like this:

DataSource contactsDS = DataSource.get("contacts");

You can now supply this DataSource to the components via the
setDataSource() method. The complete code for a page that binds a
grid and form to this DataSource is:

DataSource contactsDS = DataSource.get("contacts");

ListGrid grid = new ListGrid();

grid.setDataSource(contactsDS);

DynamicForm form = new DynamicForm();

form.setLeft(300); // avoid overlap

form.setDataSource(contactsDS);

Visual Components Smart GWT Quick Start

22 Version 2.3

In this example, the grid and form components are now automatically
generating component fields based on DataSource fields. Note that the
form has chosen specific controls for certain fields—it does so based on
the following rules:

Field attribute Form control

valueMap provided SelectItem (dropdown)

type boolean CheckboxItem (checkbox)

type date DateItem (date control)

length > 255 TextAreaItem (large text box)

You can override these choices by setting the editorType attribute on the
<field> tag in the .ds.xml file to the Java classname of the desired
FormItem.

Other common DataSource field properties include:

Property Values

name Unique field identifier (required on every
DataSource field)

type ―text‖ | ―integer‖ | ―float‖ | ―boolean‖ | ―date‖ |
―sequence‖

title Default user-visible label for the field.

length Maximum length of text value in characters.

hidden Defaults to true; specifies whether this field
should be hidden from the end user. When
hidden, it will not appear in the default
presentation, and it will not appear in any field
selectors (such as the column picker menu in a
ListGrid).

detail Defaults to true; specifies whether this field is a
―detail‖ that should not be shown by default in
multi-record summary views such as a ListGrid.

required ―true‖ | ―false‖; applies validation on both client
and server to verify that the field is non-blank.

valueMap An array of values, or an object containing
storedValue:displayValue pairs.

editorType FormItem class to use when editing this field (in
any DataBoundComponent).

Smart GWT Quick Start Visual Components

Version 2.3

 23

primaryKey Defaults to true; specifies whether this is the
field that uniquely identifies each record in this
DataSource (that is, it must have a unique value
for each record). Each DataSource must have
exactly one field with primaryKey="true". The
primaryKey field is often specified with
type="sequence" and hidden="true", to generate
a unique internal key for rapid prototyping.

foreignKey A reference to a field in another DataSource
(dsName.fieldName).

rootValue For fields that establish a tree relationship (by
foreignKey), this value indicates the root node
of the tree.

For more information on DataSources and a complete reference of
properties that may be set in .ds.xml files, see

 Smart GWT JavaDoc:

com.smartgwt.client.docs.serverds

Do not import this package—it is informational only.

 For DataSource usage examples, see the descriptors in samples\
showcase\war\ds. These DataSources are used in various Smart
GWT SDK examples, including the Smart GWT EE Showcase.

 For an example of a DataSource relationship using foreignKey, see
the TreeGrid example in the Smart GWT EE Showcase (TreeGrid
UI) and samples\showcase\war\ds\
employees.ds.xml (associated DataSource).

Customized Data Binding

You can also combine DataSource binding and component-specific field
definitions. Smart GWT merges your component field definitions and
DataSource field definitions by using the name property of the fields to
match component fields with DataSource fields.

In this case, component field definitions specify presentation attributes
specific to that component, while the DataSource field definitions specify
data attributes and presentation attributes common to all
DataBoundComponents.

http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/docs/serverds/package-summary.html

Visual Components Smart GWT Quick Start

24 Version 2.3

By combining component-specific fields and DataSource fields, you can
share data model attributes and common presentation attributes across
all components, while still allowing full customization of individual
components for a specific use case. For example, a ListGrid component
might specify a shorter title attribute for more compact display
(―Percentage‖ represented as ―%‖).

Components can also have additional fields not defined in the
DataSource. For example, a user registration form might have a second
password field to ensure that the user has typed his password correctly.

By default, a component with both fields and a DataSource will only show
the fields defined on the component, in the order they are defined on the
component. To change this behavior, use
setUseAllDataSourceFields(true). Now, all DataSource fields will be
shown unless you provide a component field definition where you have
called setHidden(true).

 For an example of customized binding, see Forms → Validation →
Customized Binding in the Smart GWT Showcase.

 For more information on the layout of managed form controls, see
the section Form Layout in Chapter 6.

DataSource Operations

Smart GWT provides a standardized set of data operations that act upon
DataSources:

Operation Methods Description

Fetch fetchData(…) Retrieves records from the
datasource that match the
provided criteria.

Add addData(…) Creates a new record in the
datasource with the provided
values.

Update updateData(…) Updates a record in the
datasource with the provided
values.

Remove removeData(…) Deletes a record from the
datasource that exactly matches
the provided criteria.

Smart GWT Quick Start Visual Components

Version 2.3

 25

These methods each take three parameters:

 a data object containing the criteria for a Fetch or Filter
operation, or the values for an Add, Update, or Remove
operation

 a callback expression that will be evaluated when the
operation has completed

 a properties object containing additional parameters for
the operation—timeout length, modal prompt text, and so on
(see DSRequest in the Smart GWT Reference for details)

You may call any of these four methods directly on a DataSource object or
on a databound ListGrid or TreeGrid.

For example, the following code saves a new Record to the contactDS
DataSource and displays a confirmation when the save completes:

import com.smartgwt.client.data.DSCallback;

import com.smartgwt.client.data.DSResponse;

Record contact = new Record();

contact.setAttribute("salutation", "Mr.");

contact.setAttribute("firstname", "Steven");

contact.setAttribute("lastname", "Hudson");

DSCallback callback = new DSCallback() {

 public void execute(DSResponse response,

 Object rawData,

 DSRequest request)

 {

 Record savedContact = response.getData()[0];

 SC.say(savedContact.getAttribute("firstname")+

 "added to contact list");

 }

};

contactDS.addData(contact,callback);

DataSource operations will only execute successfully if the
DataSource is bound to a persistent data store. You can create
relational database tables from a DataSource .ds.xml file by using
the Import DataSources section in the Smart GWT Admin Console.
For integration with pre-existing business logic or non-SQL
persistence systems, see Chapter 7, Data Integration.

Visual Components Smart GWT Quick Start

26 Version 2.3

DataBound Component Operations

In addition to the standard DataSource operations listed above, you can
perform Add and Update operations from databound form components
by calling the following DynamicForm methods:

Method Description

editRecord() Starts editing an existing record

editNewRecord() Starts editing a new record

saveData() Saves the current edits (add new
records; update existing records)

Databound components also provide several convenience methods for
working with the selected records in components that support selection,
such as ListGrid:

Convenience Method

listGrid.removeSelectedData()

dynamicForm.editSelectedData(listGrid)

detailViewer.viewSelectedData(listGrid)

Each sample in the samples directory in the SDK shows the most
common DataBoundComponents interacting with DataSources.

Smart GWT Quick Start Visual Components

Version 2.3

 27

Data Binding Summary

This chapter began by introducing Databound Components, to build on
the concepts of the previous chapter, Visual Components. However, in
actual development, DataSources usually come first. The typical steps to
build a databound user interface with Smart GWT components are:

1. Create DataSource descriptors (.ds.xml files), specifying data
model (metadata) properties in the DataSource fields.

2. Back your DataSources with an actual data store. The Smart
GWT Admin Console GUI can create and populate relational
database tables for immediate use. Chapter 7, Data Integration,
describes the integration points for binding to other object
models and data stores.

3. Load DataSource descriptors in your Smart GWT-enabled pages
using a standard <script src=…> HTML tag referencing the
DataSourceLoader servlet. Or, for DataSources that do not use
the Smart GWT server, create them programmatically in Java.

4. Create and bind visual components to DataSources using the
setDataSource() method with components that support data-
binding.

5. Modify component-specific presentation properties by adding
customized field definitions where necessary

6. Call databound component methods (such as fetchData) to
perform standardized data operations through your databound
components.

DataSources effectively hide the back-end implementation of your data
and service tiers from your front-end presentation—so you can change the
back-end implementation at any time, during development or post-
deployment, without changing your client code.

See Chapter 7, Data Integration, for an overview of server-side
integration points that address all stages of your application lifecycle.

Visual Components Smart GWT Quick Start

28 Version 2.3

6. Layout

Component Layout

Most of the code snippets seen so far create just one or two visual
components, and position them manually with the left, top, width, and
height properties.

This manual layout approach becomes brittle and complex with more
components. For example, you may want to:

 allocate available space based on relative measures (such as
30%)

 resize and reposition components when other components
are resized, hidden, shown, added, removed, or reordered

 resize and reposition components when the browser window
is resized by the user

Smart GWT includes a set of layout managers to provide these and other
automatic behaviors. The Smart GWT layout managers implement
consistent dynamic sizing, positioning, and reflow behaviors that cannot
be accomplished with HTML and CSS alone.

The fundamental Smart GWT layout manager is implemented in the
Layout class, which provides four subclasses to use directly:

 HLayout manages the positions and widths of a list of
components in a horizontal sequence.

 VLayout manages the positions and heights of a list of
components in a vertical sequence.

 HStack positions a list of components in a horizontal
sequence, but does not manage their widths.

 VStack positions a list of components in a vertical sequence,
but does not manage their heights.

Smart GWT Quick Start Visual Components

Version 2.3

 29

These layout managers are, themselves, visual components, so you can
create and configure them the same way you would create a Label, Button,
ListGrid, or other independent component.

The main properties of a layout manager are:

Layout property Description

members An array of components managed by this
layout.

membersMargin Number of pixels of space between each
member of the layout.

layoutMargin Number of pixels of space surrounding the
entire layout.

The member components also support additional property settings in the
context of their parent layout manager:

Member
property

Description

layoutAlign Alignment with respect to the breadth axis
of the layout (―left,‖ ―right,‖ ―top,‖ ―bottom,‖
or ―center‖).

showResizeBar Specifies whether a drag-resize bar appears
between this component and the next
member in the layout. (―true‖ | ―false‖).

width, height Layout-managed components support a ―*‖
value (in addition to the usual number and
percentage values) for their size on the
length axis of the layout, to indicate that
they should take a share of the remaining
space after fixed-size components have been
counted (this is the default behavior if no
width/height is specified).

 Components that automatically size to fit their contents
will not be resized by a layout manager. By default, Canvas,
Label, DynamicForm, DetailViewer, and Layout components have
set.Overflow(Overflow.VISIBLE), so they expand to fit their
contents. If you want one of these components to be sized by a
layout instead, you must set its overflow property to hidden (clip) or
auto (show scrollbars when needed).

Layout managers may have other layout managers as members. By
nesting combinations of HLayout and VLayout, you can create complex

Visual Components Smart GWT Quick Start

30 Version 2.3

dynamic layouts that would be difficult or impossible to achieve in HTML
and CSS.

You can use the special LayoutSpacer component to insert extra space into
your layouts. For example, here is the code to create a basic page header
layout, with a left-aligned logo and right-aligned title:

import com.smartgwt.client.widgets.Img;

import com.smartgwt.client.widgets.layout.LayoutSpacer;

HLayout hLayout = new HLayout(10);

hLayout.setID("myPageHeader");

hLayout.setHeight(50);

hLayout.setLayoutMargin(10);

hLayout.addMember(new Img("myLogo.png"));

hLayout.addMember(new LayoutSpacer());

hLayout.addMember(new Label("My Title"));

hLayout.draw();

Container Components

In addition to the basic layout managers, Smart GWT provides a set of
rich container components. These include:

SectionStack to manage multiple stacked, user-
 expandable and collapsible ‗sections‘ of
 components

TabSet to manage multiple, user-selectable ‗panes‘
 of components in the same space

Window to provide free-floating, modal and non-
 modal views that the user can move, resize,
 maximize, minimize, or close

 See the Smart GWT Demo Application
(http://www.smartclient.com/smartgwt/showcase/
#featured_complete_app) for examples of various layout
components in action.

 For more information, see com.smartgwt.client.widgets.layout

http://www.smartclient.com/smartgwt/showcase/#featured_complete_app
http://www.smartclient.com/smartgwt/showcase/#featured_complete_app
http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/widgets/layout/package-summary.html

Smart GWT Quick Start Visual Components

Version 2.3

 31

Form Layout

Data entry forms have special layout requirements—they must present
their controls and associated labels in regularly aligned rows and
columns, for intuitive browsing and navigation.

When form controls appear in a DynamicForm, their positions and sizes are
controlled by the Smart GWT form layout manager. The form layout
manager generates a layout structure similar to an HTML table. Form
controls and their titles are rendered in a grid from left-to-right, top-to-
bottom. You can configure the high-level structure of this grid with the
following DynamicForm properties:

DynamicForm
property

Description

numCols Total number of columns in the grid, for form
controls and their titles. Set to a multiple of 2,
to allow for titles, so numCols:2 allows one
form control per row and numCols:4 allows
two form controls per row.

titleWidth Number of pixels allocated to each title
column in the layout.

colWidths Optional array of pixel widths for all columns
in the form. If specified, these widths will
override the column widths calculated by the
form layout manager.

You can control the positioning and sizing of form controls in the layout
grid by changing their positions in the fields array, their height and width
properties, and the following field properties:

Field
property

Description

colSpan Number of form layout columns occupied by this
control (not counting its title, which occupies
another column)

rowSpan Number of form layout rows occupied by this
control

startRow Specifies whether this control should always start
a new row. (―true‖ | ―false‖)

endRow Specifies whether this control should always end
its row. (―true‖ | ―false‖)

Visual Components Smart GWT Quick Start

32 Version 2.3

Field
property

Description

showTitle Specifies whether this control should display its
title. (―true‖ | ―false‖)

align Horizontal alignment of this control within its
area of the form layout grid (―left,‖ ―right,‖ or
―center‖)

 See Showcase → Forms → Form Layout for examples of usage of
these properties.

 ButtonItem has both startRow:true and endRow:true by default. To
place a button next to a text field or other form component, one or
both of these properties must be set false, and enough columns
must exist for both the button and any controls it is adjacent to (for
example, 3 for a TextItem with title and a ButtonItem).

You can also use the following special form items to include extra space
and formatting elements in your form layouts:

 HeaderItem

 BlurbItem

 SpacerItem

 RowSpacerItem

See the JavaDoc for these classes for properties that can be set for
additional control.

 For more information on form layout capabilities, see:

 Smart GWT JavaDoc:

com.smartgwt.client.docs.FormLayout

 Smart GWT JavaDoc:

com.smartgwt.client.widgets.form.fields.FormItem

http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/docs/FormLayout.html
http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/widgets/form/fields/FormItem.html

Smart GWT Quick Start Visual Components

Version 2.3

 33

7. Data Integration

Smart GWT DataSources provide a data-provider-agnostic interface to
databound components, allowing those components to implement
sophisticated behaviors that can be used with any data provider. In this
chapter, we explain how to integrate a DataSource with various
persistence systems so that the operations initiated by databound
components can retrieve and modify persistent data.

DataSource Requests

When a visual component, or your own custom code, attempts to use a
DataSource operation, a DSRequest (DataSource Request) is created
representing the operation. ―Data Integration‖ is the process of fulfilling
that DSRequest by creating a corresponding DSResponse (DataSource
Response), by using a variety of possible approaches to connect to the
ultimate data provider.

There are two main approaches to fulfilling DataSource Requests:

 Server-side integration (Smart GWT Server
Framework): DataSource requests from the browser arrive
as Java Objects on the server. You deliver responses to the
browser by returning Java Objects. This is the simpler and
more powerful approach.

 Client-side integration: DataSource requests arrive as
HTTP requests which your server code receives directly (in
Java, you use the Servlet API or .jsp files to handle the
requests). Responses are sent as XML or JSON, which you
directly generate.

Visual Components Smart GWT Quick Start

34 Version 2.3

The possible approaches to data integration are summarized in the
following diagram. Paths 2, 3 and 4 are client-side integration
approaches, while path 1 includes all server-side integration approaches.

Smart GWT Server Framework

Path 1 makes use of the Smart GWT Server Framework. Available with
Pro edition and above, the server framework is a set of Java libraries and
servlets that can be integrated with any pre-existing Java application.

Unless you are forced to use a different approach (for example, you are
not using a Java-based server, and cannot deploy a Java-based server in
front of your existing server), it is highly recommended that you use the
Smart GWT Server Framework for data integration. The server
framework delivers an immense range of functionality that compliments
any existing application and persistence engine. Chapter 8, Smart GWT
Server Framework, provides an overview.

If you cannot use the Smart GWT Server Framework, the best approaches
for data integration are covered later in this chapter.

Smart GWT Quick Start Visual Components

Version 2.3

 35

DSRequests and DSResponses

Regardless of the data integration approach used, the data in the request
and response objects has the same meaning.

The key members of a DSRequest object are:

 data: the search criteria (for ―fetch‖), new record values (―add‖ or
―update‖) or criteria for the records to delete (―remove‖)

 sortBy: requested sort direction for the data (―fetch‖ only)

 startRow and endRow: the range of records to fetch (if paging is
active)

 oldValues: values of the record before changes were made, for
checking for concurrent edits (all operations but ―fetch‖)

The key members of a DSResponse object are:

 status: whether the request succeeded or encountered a validation
or other type of error

 data: the matching records (for ―fetch‖), data-as-saved (―add‖ or
―update‖), or deleted record (―remove‖)

 startRow and endRow: the range of records actually returned (if
paging is active)

 totalRows: the total number of records available

 errors: for a validation error response, fields that were invalid and
error messages for each

Request and Response Transformation

If you are using the Smart GWT Server Framework with one of the built-
in DataSource types (such as SQL or JPA/Hibernate), you will not need to
do any request or response transformation work and can proceed directly
to Chapter 8, Smart GWT Server Framework.

If you cannot use the server framework, but you are free to define the
format and content of messages passed between the browser and your
server, the simplest data integration approach is the RestDataSource class.

The RestDataSource performs the four core DataSource operations using a
simple, well-documented protocol of XML or JSON requests and
responses sent over HTTP. The HTTP requests sent by the client will
contain the details of the DSRequest object and your server-side code

Visual Components Smart GWT Quick Start

36 Version 2.3

should parse this request and output an XML or JSON formatted
response containing the desired properties for the DSResponse.

If, instead, you are required to integrate with a pre-existing service that
defines its own HTTP-based protocol, you can configure a subclass of the
DataSource class to customize the HTTP request format and the expected
format of responses.

For services that return XML or JSON data (including WSDL), you can
specify XPath expressions indicating what part of the data should be
transformed into dsResponse.data. If XPath expressions are not sufficient,
you can override DataSource.transformRequest() and
DataSource.transformResponse() and add Java code to handle those
cases.

These same two APIs (transformRequest and transformResponse) enable
integration with formats other than XML and JSON, such as CSV over
HTTP or proprietary message formats.

Finally, setting DataSource.dataProtocol to DSProtocol.CLIENTCUSTOM
prevents a DataSource from trying to directly send an HTTP request,
allowing integration with data that has already been loaded by a third
party communication system, or integration in-browser persistence
engines such as HTML5 localStorage or Google Gears.

To learn more about using the RestDataSource and client-side data
integration options, see:

 Smart GWT JavaDoc:

com.smartgwt.client.data.RestDataSource

 Smart GWT JavaDoc:

com.smartgwt.client.docs.ClientDataIntegration

For a live sample of RestDataSource showing sample responses, see:

 Smart GWT Showcase

showcase/#featured_restfulds

http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/data/RestDataSource.html
http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/docs/ClientDataIntegration.html
http://www.smartclient.com/smartgwt/showcase/#featured_restfulds

Smart GWT Quick Start Visual Components

Version 2.3

 37

Criteria, Paging, Sorting and Caching

Smart GWT UI components such as the ListGrid provide an interface that
allows an end user to search data, sort data, and page through large
datasets. As this interface is used, the UI component generates DSRequests
that will contain search criteria, requested sort directions and requested
row ranges.

However, Smart GWT does not require that a data provider implement all
of these capabilities. In fact, Smart GWT is able to use a ―flat file‖ as a
response to the ―fetch‖ operation, and implement searching and sorting
behaviors within the browser.

If a data provider cannot implement paging and sorting behaviors, it is
sufficient to simply ignore the startRow, endRow and sortBy attributes of
the DSRequest and return a DSResponse containing all data that matches
the provided criteria, in any order. Smart GWT will perform sorting
client-side as necessary. This does not need to be configured in advance –
a data provider can decide, on a case-by-case basis, whether to simply
return all data for a given request.

If a data provider also cannot implement the search behavior, the
DataSource can be set to cacheAllData. This means that the first time any
data is requested, all data will be requested (specifically, a DSRequest will
be sent with no search criteria). Smart GWT will then perform searches
within the browser. Data modification requests (―add‖, ―update‖ or
―remove‖ operations) are still sent normally – in effect, a ―write-through‖
cache is maintained.

To learn more about searching, sorting, paging and caching
behaviors, see:

 Smart GWT JavaDoc:

com.smartgwt.client.data.ResultSet

com.smartgwt.client.data.DataSource#cacheAllData

http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/data/ResultSet.html
http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/data/DataSource.html#setCacheAllData%28java.lang.Boolean%29

Visual Components Smart GWT Quick Start

38 Version 2.3

Authentication and Authorization

Securing Smart GWT applications is done in substantially the same way
as standard web applications. In fact, Smart GWT‘s advanced architecture
actually simplifies the process and makes security auditing easier.

For example, enabling HTTPS requires no special configuration. Simply
ensure that any URLs provided to Smart GWT do not include an explicit
―http://‖ at the beginning, and all DSRequests, requests for images and so
forth will automatically use the ―https://‖ prefix and be protected.

Although it is straightforward to build a login interface in Smart GWT, it
is generally recommended that you implement your login page as a plain
HTML page, due to the following advantages:

 interoperable/single sign-on capable —if your application
may need to participate in single sign-on environment (even
in the distant future), you will be in a better position to
integrate if you are making minimal assumptions about the
technology and implementation of the login page

 login page appears instantly—the user does not have to wait
for the entire application to download in order to see the
login page and begin entering credentials

 background loading – use techniques such as off-screen
 tags and <script defer=true/> tags to begin loading
your application while the user is typing in credentials

Most authentication systems feature the ability to protect specific URLs or
URLs matching a pattern or regular expression, such that a browser will
be redirected to a login page or given an access denied error message.
When securing your Smart GWT application:

 Do protect the URL of your bootstrap HTML file.
Unauthenticated users should be redirected to the login page
when this URL is accessed.

 Do protect the URLs that return dynamic data, for example,
sc/IDACall if you are using the Smart GWT Server
Framework, or the URL(s) you configure as
DataSource.dataURL if not.

Smart GWT Quick Start Visual Components

Version 2.3

 39

 Do not protect the static resources that are part of the skin
or the SmartClient runtime underlying Smart GWT,
specifically the URL patterns sc/skins/* and sc/system/*.
These are publically available files; protecting them just
causes a performance hit and in some cases can negatively
affect caching

 Consider leaving GWT-generated application logic such as
*.cache.html files unprotected. These files are heavily
obfuscated and analyzing them is not a likely approach for
an attacker to take. As with other static resources, not
protecting these files provides a performance boost.

If you are using the Smart GWT Server Framework, see the Declarative
Security section of Chapter 8 for further authentication and authorization
features, including the ability to declare role-based security restrictions in
.ds.xml file, create variations on DataSource operations accessible to
different user roles, and create certain operations accessible to
unauthenticated users.

Relogin

When a user‘s session has expired and the user tries to navigate to a
protected resource, typical authentication systems will redirect the user to
a login page. With Ajax systems such as Smart GWT, this attempted
redirect may happen in response to background data operations, such as a
form trying to save. In this case, the form perceives the login page as a
malformed response and displays a warning, and the login page is never
displayed to the user.

The ideal handling of this scenario is that the form‘s attempt to save is
―suspended‖ while the user re-authenticates, then is completed normally.
Smart GWT makes it easy to implement this ideal handling through the
Relogin subsystem.

 To enable Smart GWT to detect that session timeout has occurred, a
special marker needs to be added to the HTTP response that is sent when
a user's session has timed out. This is called the loginRequiredMarker.

When this marker is detected, Smart GWT raises a LoginRequired event,
automatically suspending the current network request so that it can be
later resubmitted after the user logs back in.

To learn more about the loginRequiredMarker and Relogin, see:

 Smart GWT JavaDoc:

com.smartgwt.client.docs.Relogin

http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/docs/Relogin.html

Visual Components Smart GWT Quick Start

40 Version 2.3

8. Smart GWT Server Framework

The Smart GWT server framework is a set of Java libraries and servlets
that can be integrated with any pre-existing Java application.

The server framework allows you to rapidly connect Smart GWT visual
components to pre-existing Java business logic, or can provide complete,
pre-built persistence functionality based on SQL, Hibernate, JPA or other
Java persistence frameworks.

DataSource Generation

The server framework allows you to generate DataSource descriptors
(.ds.xml files) from Java Beans or SQL tables. This can be done as either a
one-time generation step, or can be done dynamically, creating a direct
connection from the property definitions and annotations on your Java
Beans to your UI components.

This approach avoids the common problem of UI component definitions
duplicating information that already exists on the server, while still
enabling every aspect of data binding to be overridden and specialized for
particular screens.

As an example, if you had the Java Bean Contact, the following is a valid
DataSource whose fields would be derived from a Java Bean:

<DataSource ID="contacts" schemaBean="com.sample.Contact"/>

Using schemaBean doesn‘t imply any particular persistence engine; it uses
the provided Java class for derivation of DataSource fields only.

The following DataSource would derive its fields from your database
columns (as well as being capable of all CRUD operations):

<DataSource ID="contacts" serverType="sql"

 tableName="contacts" autoDeriveSchema="true" />

Smart GWT Quick Start Visual Components

Version 2.3

 41

In many scenarios, an auto-derived DataSource is immediately usable for
UI component databinding. Among other intelligent default behaviors,
field titles appropriate for end users are automatically derived from Java
property names and SQL column names by detecting common naming
patterns.

For example, a Java property accessed by a method getFirstName()
receives a default title of ―First Name‖ by recognizing the Java
―camelCaps‖ naming convention; a database column named FIRST_NAME
also receives a default title of ―First Name‖ by recognizing the common
database column naming pattern of underscore-separated words.

The default rules for mapping between Java and SQL types and
DataSourceField types are summarized in the following table:

Java Type SQL JDBC Type DataSource
Field type

String, Character CHAR, VARCHAR,
LONGVARCHAR, CLOB

text

Integer, Long,
Short, Byte,
BigInteger

INTEGER, BIGINT,
SMALLINT, TINYINT, BIT

integer

Float, Double,
BigDecimal

FLOAT, DOUBLE, REAL,
DECIMAL, NUMERIC

float

Boolean <none> boolean

Date, java.sql.Date DATE date

java.sql.Time TIME time

java.sql.Timestamp TIMESTAMP datetime

any Enum <none> enum

(valueMap also
auto-derived)

In addition to the Java types listed, primitive equivalents are also
supported (―Integer‖ in the table above implies both Integer and int) as
well as subclasses (for non-final types like Date).

You can customize the automatically generated fields in a manner similar
to customizing the fields of a DataBound component. Fields declared with
the same name as automatically derived fields will override individual
properties from the automatically derived field; fields with new names
will appear as added fields.

Visual Components Smart GWT Quick Start

42 Version 2.3

For example, you may have a database column employment that stores a
one-character employment status code, and needs a valueMap to display
appropriate values to end users:

<DataSource ID="contacts" serverType="sql"

 tableName="contacts" autoDeriveSchema="true">

 <fields>

 <field name="employment">

 <valueMap>

 <value ID="E">Employed</value>

 <value ID="U">Unemployed</value>

 </valueMap>

 </field>

 </fields>

</DataSource>

Field by field overrides are based on DataSource inheritance, which is a
general purpose feature that allows a DataSource to inherit field
definitions from another DataSource. In effect, schemaBean and
autoDeriveSchema automatically generate an implicit parent DataSource.
Several settings are available to control field order and field visibility
when using DataSource inheritance, and these settings apply to
automatically generated fields as well.

Finally, for medium size and larger applications with at least 20
DataSources, consider the more advanced Batch DataSource Generator.
This tool:

 Provides customization hooks so that you can easily use
organization-specific naming patterns, Java annotations, or
other available hints to generate richer DataSource
definitions and avoid hand-coding

 Generates multiple DataSources at once so that inter-
DataSource relationships can be detected and captured as
properties that drive Smart GWT behavior (such as
foreignKey and optionDataSource)

The Batch DataSource Generator comes with Enterprise licenses, and is
included in the commercial evaluation. After following the same steps as
are required for the Admin Console (see Chapter 2, Installation), use
SCEE.openDataSourceGenerator() to launch it.

For more information on DataSource generation, see:

 Smart GWT Java Doc:

com.smartgwt.client.docs.serverds.DataSource.schemaBean

com.smartgwt.client.docs.serverds.DataSource.autoDeriveSchema

com.smartgwt.client.docs.serverds.DataSource.inheritsFrom

http://www.smartclient.com/smartgwtee/javadoc/com/smartgwtee/tools/client/SCEE.html#openDataSourceGenerator()
http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/docs/serverds/DataSource.html#schemaBean
http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/docs/serverds/DataSource.html#autoDeriveSchema
http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/docs/serverds/DataSource.html#inheritsFrom

Smart GWT Quick Start Visual Components

Version 2.3

 43

Server Request Flow

When using the Smart GWT server framework, DSRequests go through the
following flow:

1. DSRequest serialization: requests from DataSources are
automatically serialized and delivered to the server.

2. DSRequest parsing: requests are automatically parsed by a
servlet included with the Smart GWT server framework, and
become com.isomorphic.datasource.DSRequest Java Objects.

3. Authentication, validation, and role-based security checks are
performed based on declarations in your DataSource descriptor
(.ds.xml file). For example, requiresRole="manager".

4. DMI (Direct Method Invocation): custom Java logic can be run
before or after the DataSource operation is performed,
modifying the DSRequest or DSResponse objects, or can skip the
DataSource operation and directly provide a DSResponse.

5. Persistence operation: the validated DSRequest is passed to a
DataSource for execution of the persistence operation. The
DataSource can be one of several built-in DataSource types
(such as SQL or Hibernate) or a custom type.

6. The DSResponse is automatically serialized and delivered to the
browser.

Most of these steps are entirely automatic—when you begin building a
typical application using one of the built-in DataSource types, the only
server-side source code files you will create are:

 .ds.xml files describing your business objects

 .java files with DMI logic expressing business rules

If you cannot use one of the built-in DataSource types (perhaps you have
a pre-existing, custom ORM solution, or perhaps persistence involves
contacting a remote server), you will also have Java code to implement
persistence operations.

Visual Components Smart GWT Quick Start

44 Version 2.3

As your application grows, you can add Java logic or take over processing
at any point in the standard server flow. For example, you can:

 replace the built-in servlet from step 2 (IDACall) with your
own servlet, or place a servlet filter in front of it

 add your own Java validation logic

 subclass a built-in DataSource class and add additional logic
before or after the persistence operation, such as logging all
changes

 provide custom logic for determining whether a user is
authenticated, or has a given role

For a more detailed overview of the server-side processing flow and
documentation of available override points, see:

Smart GWT JavaDoc:

com.smartgwt.client.docs.ServerDataIntegration

http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/docs/ServerDataIntegration.html

Smart GWT Quick Start Visual Components

Version 2.3

 45

Direct Method Invocation

DMI (Direct Method Invocation) allows you to declare what Java class
and method should be invoked when specific DSRequests arrive at the
server. A DMI is declared by adding a <serverObject> tag to your
DataSource descriptor.

For example, the following declaration indicates that all DSRequests for
this DataSource should go to the Java class com.sample.DMIHandler:

<DataSource ID="contacts" schemaBean="com.sample.Contact">

 <serverObject className="com.sample.DMIHandler"/>

</DataSource>

In this example, DMI will invoke a method on com.sample.DMIHandler
named after the type of DataSource operation—fetch(), add(), update()
or remove().

The attribute lookupStyle controls how the server framework obtains an
instance of DMIHandler. In the sample above, lookupStyle is not specified,
so an instance of DMIHandler is created exactly as though the code new
DMIHandler() were executed.

Other options for lookupStyle allow you to:

 target objects in the current servlet request or servlet session

 obtain objects via a factory pattern

 obtain objects via the Spring framework, including the
ability to use Spring‘s ―dependency injection‖ to set up the
target object

For more information on using lookupStyle, see:

Smart GWT JavaDoc:

com.smartgwt.client.docs.serverds.ServerObject

http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/docs/serverds/ServerObject.html#lookupStyle

Visual Components Smart GWT Quick Start

46 Version 2.3

DMI Parameters

Methods invoked via DMI can simply declare arguments of certain types,
and they are provided automatically.

For example, a common DMI method signature is:

public DSResponse fetch(DSRequest dsRequest) {

When this method is called via DMI, it will be passed the current
DSRequest. If the method also needs the current HttpServletRequest, it
can simply be declared as an additional parameter:

public DSResponse fetch(DSRequest dsRequest, HttpServletRequest request) {

This works for all of the common objects available to a servlet (such as
HttpSession) as well as all Smart GWT objects involved in DSRequest
processing (such as DataSource).

Parameter order is not important—available objects are matched to your
method‘s declared parameters by type.

For more information on available DMI parameters, see:

Smart GWT JavaDoc:

com.smartgwt.client.docs.DMIOverview

Adding DMI Business Logic

A DMI can directly perform the required persistence operation and return
a DSResponse populated with data, and in some use cases, this is the right
approach.

However, if you are using one of the built-in DataSource types in Smart
GWT, or you build a similar, re-usable DataSource of your own, DMI can
be used to perform business logic that modifies the default behavior of
DataSources.

Within a DMI, to invoke the default behavior of the DataSource and
obtain the default DSResponse, call dsRequest.execute(). The following
DMI method is equivalent to not declaring a DMI at all:

 public DSResponse fetch(DSRequest dsRequest) throws Exception {

 return dsRequest.execute();

 }

http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/docs/DmiOverview.html

Smart GWT Quick Start Visual Components

Version 2.3

 47

Given this starting point, we can see that it is possible to:

1. Modify the DSRequest before it is executed by the DataSource.

For example, you might add criteria to a ―fetch‖ request so that users
who are not administrators cannot see records that are marked
deleted.

 if (!servletRequest.isUserInRole("admin")) {

 dsRequest.setFieldValue("deleted", "false");

 }

2. Modify the DSResponse before it is returned to the browser.

For example, adding calculated values derived from DataSource data,
or trimming data that the user is not allowed to see. Typically, use
dsResponse.getRecords() and iterate over the returned records,
adding or modifying properties. If records should be eliminated, pass
the modified List of records to dsResponse.setData().

3. Substitute a completely different DSResponse, such as returning
an error response if a security violation is detected

To return a validation error:

 DSResponse dsResponse = new DSResponse();

 dsResponse.addError("fieldName", "errorMessage");

 return dsResponse;

For this kind of error, the default client-side behavior will be to show
the error in the UI component where saving was attempted.

To return an unrecoverable error:

 DSResponse dsResponse =

 new DSResponse("Failure", DSResponse.STATUS_FAILURE);

 return dsResponse;

For this kind of error, the default client-side behavior is a dialog box
shown to the user, with the message ―Failure‖ in this case. Customize
this via the client-side API RPCManager.setHandleErrorCallback().

Visual Components Smart GWT Quick Start

48 Version 2.3

4. Take related actions, such as sending an email notification.

Arbitrary additional code can be executed before or after
dsRequest.execute(), however, if the related action you need to
perform is a persistence operation (such as adding a row to another
SQL table), a powerful approach is to create additional, unrelated
DSRequests that affect other DataSources, and execute() them.

For example, you might create a DataSource with ID ―changeLog‖ and
add a record to it every time changes are made to other DataSources:

 DSRequest extraRequest = new DSRequest("changeLog", "add");

 extraRequest.setFieldValue("effectedEntity",

 dsRequest.getDataSourceName());

 extraRequest.setFieldValue("modifyingUser",

 servletRequest.getRemoteUser());

 // ... capture additional information ...

 extraRequest.execute();

It often makes sense to create DataSources purely for server-side use—a
quick idiom to make a DataSource inaccessible to browser requests is to
add requires="false" to the <DataSource> tag—why this works is
explained in the upcoming Declarative Security section.

Note that many of the DMI use cases described above can alternatively be
achieved by adding simple declarations to your DataSource .ds.xml file—
this is covered in more detail in the upcoming Operation Bindings
section.

For more information on modifying the request and response objects, or
executing additional requests, see:

Smart GWT Server JavaDoc:

com.isomorphic.datasource.DSRequest

com.isomorphic.datasource.DSResponse

For more information on error handling and display of errors, see:

Smart GWT JavaDoc:

com.smartgwt.client.rpc.RPCManager

com.smartgwt.client.widgets.form.DynamicForm

For a sample of DMI used to implement business logic, see:

 Smart GWT Enterprise Showcase:

 smartgwtee/showcase/#sql_user_specific_data

http://www.smartclient.com/smartgwtee/server/javadoc/com/isomorphic/datasource/DSRequest.html
http://www.smartclient.com/smartgwtee/server/javadoc/com/isomorphic/datasource/DSResponse.html
http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/rpc/RPCManager.html#setHandleErrorCallback%28com.smartgwt.client.rpc.HandleErrorCallback%29
http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/widgets/form/DynamicForm.html#getShowErrorStyle%28%29
http://www.smartclient.com/smartgwtee/showcase/#sql_user_specific_data

Smart GWT Quick Start Visual Components

Version 2.3

 49

Returning Data

Whether you return data via DMI, via a custom DataSource, or via writing
your own servlet and directly working with the RPCManager class, data that
should be delivered to the browser is passed to the dsResponse.setData()
API.

This API can accept a wide variety of common Java objects and
automatically translate them into Record objects. For example, if you are
responding to a fetch, the followingJava will all translate to a List of
Records if passed to setData().

 Any Collection of Maps

Each Map becomes a Record and each key/value pair in each Map
becomes a Record attribute.

 Any Collection of Java Beans, that is, Java Objects that use the
Java getPropertyName() / setPropertyName() naming convention

Each Bean becomes a Record and each property on each bean
becomes a Record attribute.

 Any Collection of DOM Elements (org.w3c.dom.Element)

Each Element becomes a Record, and each attribute or
subelement becomes a Record attribute.

Unlike typical XML, JSON, or RPC serialization systems, it is safe to
directly pass persistent business objects to dsResponse.setData(). Most
serialization systems, when given a persistent object such as a JPA or
Hibernate Bean, will recursively serialize all connected objects. This
frequently causes a multi-megabyte blob of data to be transmitted unless
extra effort is expended to define a second, almost entirely redundant
bean (called a DTO, or Data Transfer Object) where relevant data is
copied before serialization.

In contrast, with Smart GWT, the list of fields in your DataSource is the
full list of fields used by UI components, so it serves as a natural
definition of what data to serialize, eliminating the need to define a
redundant ―DTO.‖

Serializing only data that matches field definitions is enabled by default
for data returned from DMI, but can also be enabled or disabled
automatically by setting DataSource.dropExtraFields.

Visual Components Smart GWT Quick Start

50 Version 2.3

Note that when delivering data to the browser, the Smart GWT server
framework does not attempt to re-create Java Objects of the same type as
the objects you supply to the server side setData() API. Systems such as
GWT-RPC, which do attempt this, tend to require a huge amount of
scaffolding code to be written in order to enable a comparatively trivial
amount of functional code to be shared.

For the rare case of logic that can run unchanged on client and server, we
recommend creating a small library of static methods and including it in
both client and server-side projects.

For more information on how Java objects are translated to
Records and how to customize the transformation, see:

 Smart GWT Server JavaDoc:

com.isomorphic.js.JSTranslater.toJS()

Queuing & Transactions

Queuing is the ability to include more than one DSRequest in a single
HTTP request.

When saving data, queuing allows multiple data update operations in a
single HTTP request so that the operations can be performed as a
transaction. When loading data, queuing allows you to combine multiple
data loading operations into a single HTTP request without writing any
special server-side logic to return a combined result.

Several UI components automatically use queuing. For example, the
ListGrid supports an inline editing capability, including the ability to
delay saving so that changes to multiple records are committed at once
(autoSaveEdits:false). This mode automatically uses queuing,
submitting all changes in a single HTTP request which may contain a
mixture of ―update‖ and ―add‖ operations (for existing and new records
respectively).

With respect to the steps described in the preceding section, Server
Request Flow, when a request containing multiple DSRequests is received,
several distinct DSRequests are parsed from the HTTP request received in
step 1, steps 2-5 are executed for each DSRequest, and then all
DSResponses are serialized in step 6.

http://www.smartclient.com/smartgwtee/server/javadoc/com/isomorphic/js/JSTranslater.html#toJS%28java.lang.Object,%20java.io.Writer%29

Smart GWT Quick Start Visual Components

Version 2.3

 51

This means that if any DataSource can support the ―update‖ operation,
the DataSource also supports batch editing of records in a ListGrid with
no additional code, since this just involves executing the ―update‖
operation multiple times. Likewise, in other instances in which
components automatically use queuing (such as removeSelectedData()
with multiple records selected, and multi-row drag and drop)
implementing singular DataSource operations means that batch
operations work automatically without additional effort.

If you use the SQLDataSource or HibernateDataSource with Power Edition
or above, database transactions are used automatically, with a
configurable policy setting (RPCManager.setTransactionPolicy()) as well
as the ability to include or exclude specific requests from the transaction.

To implement transactions with your own persistence logic, make use of
dsRequest.getHttpServletRequest(). Since this API will return the same
servletRequest throughout the processing of a queue of operations, you
can store whatever object represents the transaction—a SQLConnection,
HibernateSession, or similar—as a servletRequest attribute.

For more information on transaction support, see:

 Smart GWT Server JavaDoc:

com.isomorphic.rpc.RPCManager.setTransactionPolicy()

Queuing can be initiated manually by calling the client-side API
RPCManager.startQueue(). Once a queue has been started, any user action
or programmatic call that would normally have caused a DSRequest to be
sent to the server instead places that request in a queue. Calling
RPCManager.sendQueue() then sends all the queued DSRequests as a single
HTTP request.

When the client receives the response for an entire queue, each response
is processed in order, including any callbacks passed to DataBound
Component methods.

A common pattern for loading all data required in a given screen is to
start a queue, initiate a combination of manual data fetches (such as
direct calls to DataSource.fetchData()) and automatic data fetches (allow
a ListGrid with setAutoFetchData(true) to draw()), then finally call
sendQueue(). Because in-order execution is guaranteed, you can use the
callback for the final operation in the queue as a means of detecting that
all operations have completed.

For more information on queuing, see:

 Smart GWT JavaDoc:

com.smartgwt.rpc.RPCManager.startQueue()

http://www.smartclient.com/smartgwtee/server/javadoc/com/isomorphic/rpc/RPCManager.html#setTransactionPolicy%28int%29
http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/rpc/RPCManager.html#startQueue%28%29

Visual Components Smart GWT Quick Start

52 Version 2.3

Queuing, RESTHandler, and SOAs

The existence of queuing brings huge architectural benefits. In older web
architectures, it was typical to define a unique object representing all the
data that would need to be loaded for a particular screen or dialog, and a
second object for any data that needed to be saved. This resulted in a lot
of redundant code as each new screen introduced slightly different data
requirements.

In contrast, queuing allows you to think of your code as a set of reusable
services which can be combined arbitrarily to handle specific UI
scenarios. New UI functionality no longer implies new server code—you
will only need new server code when you introduce new fundamental
operations, and, when you do introduce such operations, that is the only
new code you‘ll need to write.

Using the RESTHandler servlet, this architecture can be extended to other,
non-Smart GWT UI technologies that need the same services, as well as to
automated systems. The RESTHandler servlet provides access to the same
DataSource operations you use with Smart GWT UI components, with the
same security constraints and server-side processing flow, but using
simple XML or JSON over HTTP. The protocol used is the same as that
documented for RestDataSource.

With the combination of queuing and the RESTHandler servlet, as you
build your web application in the most efficient manner, you naturally
create secure, reusable services that fit into the modern enterprise
Service-Oriented Architecture (SOA).

For more information on the RESTHandler, see:

 Smart GWT Server JavaDoc:

com.isomorphic.servlet.RESTHandler

Operation Bindings

Operation Bindings allow you to customize how DSRequests are executed
with simple XML declarations.

Each Operation Binding customizes one of the four basic DataSource
operations (―fetch‖, ―add‖, ―update,‖ or ―remove‖). You specify which
operation is customized via the operationType attribute.

http://www.smartclient.com/smartgwtee/server/javadoc/com/isomorphic/servlet/RESTHandler.html

Smart GWT Quick Start Visual Components

Version 2.3

 53

Some basic examples:

 Fixed criteria: declare that a particular operation has certain
criteria hardcoded. For example, in many systems, records
are never actually removed and instead are simply marked
as deleted or inactive. The following declaration would
prevent users from seeing records that have been marked
deleted—any value for the ―deleted‖ field submitted by the
client would be overwritten.

<DataSource ... >

 <operationBindings>

 <operationBinding operationType="fetch">

 <criteria fieldName="deleted" value="false"/>

 </operationBinding>

 </operationBindings>

</DataSource>

Because this declaration affects the DSRequest before DMI is
executed, it will work with any persistence approach, including
custom solutions.

 Per-operationType DMI: declare separate DMIs for each
operationType.

 <operationBinding operationType="fetch">

 <serverObject className="com.sample.DMIHandler"

 methodName="doFetch"/>

 </operationBinding>

This is important when using DMI to add business logic to a
DataSource that already handles basic persistence operations,
since most operations will not need DMIs, and it‘s simpler to write
a DMI that handles one operationType only.

You can also use Operation Bindings to declare multiple variations of a
DataSource operationType. For example, when doing a fetch, in one UI
component you may want to specify criteria separately for each field, and
in another UI component you may want to do a ―full text search‖ across all
the fields at once.

These are both operations of type ―fetch‖ on the same DataSource, and
they can be distinguished by adding an operationId to the Operation
Binding. For example, if you had written a DMI method that performs full
text search called ―doFullTextSearch,‖ you could declare an
operationBinding like this:

 <operationBinding operationType="fetch" operationId="fullTextSearch">

 <serverObject className="com.sample.DMIHandler"

 methodName="doFullTextSearch"/>

 </operationBinding>

You could now configure a ListGrid to use this Operation Binding via
grid.setFetchOperation("doFullTextSearch").

Visual Components Smart GWT Quick Start

54 Version 2.3

Another common use case for operationId is output limiting. Some
DataSources have a very large number of fields, only some of which may
be needed for a particular use case, like searching from a ComboBox. You
can create a variation of the fetch operation that returns limited fields like
so:

<operationBinding operationType="fetch" operationId="comboBoxSearch"

 outputs="name,title"/>

Then configure a ComboBox to use this Operation Binding with
comboBox.setOptionOperationId("comboBoxSearch").

Setting outputs always limits the fields that are sent to the browser,
regardless of the type of DataSource used. With the built-in DataSources,
it also limits the fields requested from the underlying data store. Custom
DataSources or DMIs that want to similarly optimize communication with
the datastore can detect the requested outputs via
dsRequest.getOutputs().

For more information on features that can be configured via
Operation Bindings, see:

 Smart GWT JavaDoc:

com.smartgwt.client.docs.serverds.OperationBinding

Declarative Security

The Declarative Security system allows you to attach role-based access
control to DataSource operations, as well as create a mix of authenticated
and non-authenticated operations for applications that support limited
publicly-accessible functionality.

To attach role requirements to either a DataSource as a whole or to
individual Operation Bindings, add a requiresRole attribute with a
comma-separated list of roles that should have access.

Declarative Security is extremely powerful when combined with the ability
to create variations on core operations via Operation Bindings. For
example, if only users with the role ―admin‖ should be able to see records
marked as deleted:

 <operationBinding operationType="fetch">

 <criteria fieldname="deleted" value="false"/>

 </operationBinding>

 <operationBinding operationType="fetch" operationId="adminSearch"

 requiresRole="admin"/>

Similarly, combining requiresRole with operationBinding.outputs makes
it easy to create role-based access to fields.

http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/docs/serverds/OperationBinding.html

Smart GWT Quick Start Visual Components

Version 2.3

 55

By default, the Declarative Security system uses the core servlets API
httpServletRequest.isUserInRole() to determine whether the user has a
given role. In most J2EE security or JAAS security frameworks you might
use, this API functions properly, and Declarative Security requires no
setup steps – just start adding requiresRole attributes.

However, Declarative Security can be used with any security framework
by simply calling RPCManager.setUserRoles() before any requests are
processed, typically done as a simple subclass of the built-in IDACall
servlet.

Note further, although the terminology used is ―roles,‖ the Declarative
Security system can also be used as a much finer-grained capability
security system. Instead of using role names like ―manager‖ in the
requiresRole attribute, simply use capability names like
―canEditAccounts‖ and use RPCManager.setUserRoles() to provide the
current user‘s list of capabilities to the Declarative Security system.

For more information on role-based security, see:

 Smart GWT Java Doc:

com.smartgwt.client.docs.serverds.OperationBinding.
requiresRole

 Smart GWT Server Java Doc:

com.isomorphic.rpc.RPCManager.setUserRoles()

com.isomorphic.servlet IDACall

http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/docs/serverds/OperationBinding.html#requiresRole
http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/docs/serverds/OperationBinding.html#requiresRole
http://www.smartclient.com/smartgwtee/server/javadoc/com/isomorphic/rpc/RPCManager.html#setUserRoles%28java.util.List%29
http://www.smartclient.com/smartgwtee/server/javadoc/com/isomorphic/servlet/IDACall.html

Visual Components Smart GWT Quick Start

56 Version 2.3

The Declarative Security system can also be used to implement a mix of
operations, some of which are publicly accessible while others may be
accessed only by logged in users. To declare that a DataSource or
Operation Binding may be accessed only by authenticated users, add
requiresAuthentication="true".

Similar to role-based security checks, the requiresAuthentication
attribute uses the standard servlets API
httpServletRequest.getRemoteUser() to check whether a user is
authenticated. If this API is non-functional with your security solution,
use RPCManager.setAuthenticated(boolean) to indicate whether the
current request is from an authenticated user.

For more information on declarative security, see:

 Smart GWT Java Doc:

com.smartgwt.client.docs.serverds.DataSource.
requiresAuthentication

 Smart GWT Server Java Doc:

com.isomorphic.rpc.RPCManager.setAuthenticated()

com.isomorphic.servlet IDACall

Dynamic Expressions (Velocity)

In many places within the DataSource .ds.xml file, you can provide
a dynamic expression to be evaluated on the server.

These expressions use the Velocity template language—a simple,
easy-to-learn syntax that is used pervasively in the Java world.

Velocity works in terms of a template context—a set of objects that are
available for use in expressions. Similar to DMI parameters, all Smart
GWT and servlets-related objects are made available in the template
context by default, including dsRequest, servletRequest, session and so
on.

References to objects in the template context have a prefix of ‗$‘, and dot
notation is used to access any property for which a standard Java Bean
―getter‖ method exists, or to access any value in a java.util.Map by its
key. For example, $httpSession.id retrieves the current sessionId via
HttpSession.getId(), and $dsRequest.criteria.myFieldName will retrieve
a criteria value for the field ―myFieldName‖ via DSRequest.getCriteria(),
which returns a Map.

http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/docs/serverds/DataSource.html#requiresAuthentication
http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/docs/serverds/DataSource.html#requiresAuthentication
http://www.smartclient.com/smartgwtee/server/javadoc/com/isomorphic/rpc/RPCManager.html#setAuthenticated%28boolean%29
http://www.smartclient.com/smartgwtee/server/javadoc/com/isomorphic/servlet/IDACall.html

Smart GWT Quick Start Visual Components

Version 2.3

 57

Some common use cases for dynamic expressions:

 Server Custom Validators

The serverCustom validator type makes many common validation
scenarios into single-line Velocity expressions:

<field name="shipDate" type="date">

 <validators>

 <validator

 type="serverCustom"

 serverCondition="$value.time > $record.orderDate.time"/>

 </validators>

</field>

 Server-Assigned Criteria/Values

<criteria> and <values> tags allow you to modify the DSRequest
before execution. For example, when implementing something like
a ―shopping cart,‖ the following declaration would force all items
added to the cart to be saved with the user‘s current servlet
sessionId, and only allow the user to see his own items.

<operationBinding operationType="add">

 <values fieldName="sessionId" value="$session.id"/>

</operationBinding>

<operationBinding operationType="fetch">

 <criteria fieldName="sessionId" value="$session.id"/>

</operationBinding>

 DMI Method Arguments

The methodArguments attribute can be added to an
<operationBinding> to configure specific arguments that should be
passed to a DMI method. For example, given a Java method:

List<Lead> getRelatedLeads(long accountId, boolean includeDeleted)

You might call this method via a DMI declaration like:

<operationBinding operationType="fetch">

 <serverObject className="com.sample.DMIHandler"

 methodName="doFullTextSearch"

 methodArguments="$criteria.accountId,false"/>

</operationBinding>

Because the getRelatedLeads method returns a List of Java
Beans—a format compatible with dsResponse.setData()—there is
no need to create or populate a DSResponse. Combining this with
the methodArguments attribute allows you to call pre-existing Java
business logic with no Smart GWT-specific server code at all,
without even the need to import Smart GWT libraries code in your
server-side logic.

Visual Components Smart GWT Quick Start

58 Version 2.3

 Declarative Security (requires Attribute)

Similar to requiresRole and requiresAuthentication, the
requires attribute allows an arbitrary Velocity expression to
restrict access control.

 Mail Templates

By adding a <mail> tag to any <operationBinding>, you can cause
an email to be sent if the operation completes successfully. A
Velocity expression is allowed for each attribute that configures
the email—to, from, subject, cc, and so on—as well as the message
template itself. This makes it very easy to send out notifications
when particular records are added or updated, or, with a ―fetch‖
operation, send emails to a list of recipients retrieved by the fetch.

 SQL/HQL Templating

When using SQLDataSource or HibernateDataSource in Power
Edition and above, Velocity expressions can be used to customize
generated SQL or replace it entirely. This is covered in its own
section, SQL Templating.

The Velocity template language can also call Java methods, create new
variables, even execute conditional logic or iterate over collections. To
take full advantage of Velocity‘s advanced capabilities, you can extend the
power of dynamic expressions by adding additional data or objects to the
Velocity context.

Because the servletRequest is available to dynamic expressions, you can
access attributes stored on the servlet request with
$servletRequest.getAttribute("attrName") (a shortcut of
requestAttributes.attrName also works). You can alternatively add your
own objects to the Velocity template context via
dsRequest.addToTemplateContext().

For more information on Velocity-based Dynamic Expressions:

 Smart GWT Java Doc:

com.smartgwt.client.docs.serverds.VelocitySupport

com.smartgwt.client.docs.serverds.Validator.serverCondition

 Smart GWT Server Java Doc:

com.isomorphic.datasource.DSRequest.addToTemplateContext()

 Velocity User Guide (from the Apache foundation)

velocity.apache.org/user-guide

http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/docs/VelocitySupport.html
http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/docs/serverds/Validator.html#serverCondition
http://www.smartclient.com/smartgwtee/server/javadoc/com/isomorphic/datasource/DSRequest.html#addToTemplateContext%28java.lang.String,%20java.lang.Object%29
http://velocity.apache.org/engine/devel/user-guide.html

Smart GWT Quick Start Visual Components

Version 2.3

 59

SQL Templating

A DataSource declared with serverType=”sql” uses the SQLDataSource,
which automatically generates and executes SQL statements against a
database in response to DSRequests sent by the client.

When using the SQLDataSource with the Power Edition of Smart GWT,
SQL Templating enables fine-grained customization of generated SQL.

The SQL generator in Power Edition can take the DSRequests generated by
DataBound components and automatically handle:

 Generation of a where clause from complex criteria,
including nested ―and‖ and ―or‖ sub-expressions

 Database-specific SQL for the most efficient ranged
selections on each platform, for fast data paging

 Multi-level sorting including support for sorting by
displayed rather than stored values

 Several different styles of storing basic types like booleans
and dates, for adapting to existing tables

When you inevitably have to customize the generated SQL for a particular
use case, it‘s critical to preserve as much of this powerful, automatic
behavior as possible.

Most systems that allow customization of generated SQL provide only an
all-or-nothing option: if you need to customize, you write the complete
SQL query from scratch, and handle all database-specific SQL yourself.

In contrast, the SQL Templating system lets you change small parts of the
generated SQL while leaving all the difficult, database-specific SQL up to
Smart GWT. SQL Templating also allows you to take advantage of
database-specific features where appropriate, without losing automatic
SQL generation for standard features.

Visual Components Smart GWT Quick Start

60 Version 2.3

The following table summarizes the SQL statements that are generated
and how the DSRequest is used (note, these aren‘t the actual statements –
additional SQL exists to handle data paging and database-specific quirks):

Type SQL statement DSRequest usage

fetch

SELECT <selectClause>

FROM <tableClause>
WHERE <whereClause>

GROUP BY <groupClause>
ORDER BY <orderClause>

data becomes
<whereClause>
sortBy becomes
<orderClause>
outputs becomes
<selectClause>

add INSERT INTO <tableClause>
<valuesClause>

data becomes
<valuesClause>

update UPDATE <tableClause>
SET <valuesClause>

WHERE <whereClause>

data becomes
<valuesClause>

and <whereClause>
(primary key only)

remove DELETE FROM <tableClause>
WHERE <whereClause>

data becomes
<whereClause> clause

 (primary key only)

To customize SQL at a per-clause level, you can add tags to your
<operationBinding> named after SQL clauses. Each clause allows a
Velocity template, and the default SQL that would have been generated is
available to you as a Velocity variable:

XML Tag Velocity Variable SQL Meaning

<selectClause> $defaultSelectClause List of columns or expressions
appearing after SELECT

<tableClause> $defaultTableClause List of tables or table
expressions appearing after FROM

<whereClause> $defaultWhereClause Selection criteria appearing after
WHERE

<valuesClause> $defaultValuesClause List of expressions appearing
after SET (for UPDATE) or list of
column names and VALUES()

around list of expressions (for
INSERT)

<orderClause> $defaultOrderClause List of columns or expressions
appearing after ORDER BY

<groupClause> <none> List of columns or expressions
appearing after GROUP BY

Smart GWT Quick Start Visual Components

Version 2.3

 61

As a simple example, in an order management system, you may want to
present a view of all orders for items that are not in stock. Given two
tables, orderItem and stockItem, linked by id, you could add an
<operationBinding> to the DataSource for the orderItem table:

 <operationBinding operationType="fetch" operationId="outOfStock">

 <tableClause>orderItem, stockItem</tableClause>

 <whereClause>orderItem.stockItem_id == stockItem.id AND

 stockItem.inStock == 'F' AND ($defaultWhereClause)

 </whereClause>

 </operationBinding>

Note the use of $defaultWhereClause—this ensures that any criteria
submitted to this operation still work. Data paging and sorting likewise
continue to work.

It is also possible to override the entire SQL statement by using the
<customSQL> tag. If possible, use clause-by-clause overrides instead; using
the <customSQL> tag for a ―fetch‖ operation disables the use of efficient
data paging approaches that can only be used when Smart GWT knows
the general structure of the SQL query. However, the <customSQL> tag
does make it easy to call stored procedures:

 <operationBinding operationType="remove">

 <customSQL>call deleteOrder($criteria.orderNo)</customSQL>

 </operationBinding>

 For more information on SQL Templating, see:

 Smart GWT Java Doc:

com.smartgwt.client.docs.CustomQuerying

http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/docs/CustomQuerying.html

Visual Components Smart GWT Quick Start

62 Version 2.3

SQL Templating — Adding Fields

A customized query can return additional fields that aren‘t part of the
DataSource‘s primary table, and even allow criteria to be automatically
applied to such fields.

For the common case of incorporating a field from another table, declare
a field as usual with a <field> tag, then add the attribute
tableName="otherTable". Setting tableName enables a field to be fetched
from another table and used in the WHERE clause, but automatically
excludes the field from the SQL for any operationType except ―fetch.‖

For example, given the orderItem and stockItem tables from the
preceding example, imagine stockItem had a column itemName that you
want to include in results from the orderItem DataSource.

<DataSource ID="orderItem" serverType="sql" tableName="orderItem"

 autoDeriveSchema="true">

 <fields>

 <field name="itemName" type="text" tableName="stockItem"/>

 </fields>

 <operationBinding operationType="fetch">

 <tableClause>orderItem, stockItem</tableClause>

 <whereClause>orderItem.stockItem_id == stockItem.id AND

 ($defaultWhereClause)

 </whereClause>

 </operationBinding>

</DataSource>

This approach can be extended to any number of fields from other tables.

For an example of SQL Templating being used to add a searchable
field, see:

 Smart GWT Enterprise Showcase

smartgwtee/showcase/#large_valuemap_sql

http://www.smartclient.com/smartgwtee/showcase/#large_valuemap_sql

Smart GWT Quick Start Visual Components

Version 2.3

 63

In some cases, you may have several different Operation Bindings that use
different sets of added fields. In this case, you can set customSQL="true"
on the <field> element to turn off automatic generation. Then, use the
following <operationBinding> properties to control whether SQL is
generated for the field on a per-<operationBinding> basis.

Setting Meaning

customValueFields Comma-separated list of fields to allow in SELECT
clause despite being customSQL="true"

customCriteriaFields Comma-separated list of fields to allow in WHERE
clause despite being customSQL="true"

excludeCriteriaFields Comma-separated list of fields to exclude from
$defaultWhereClause

You can also define custom SQL on a per-field basis rather than a per-
clause basis using the following properties on a <field>:

Setting Meaning

customSelectExpression Expression to use in SELECT and WHERE clauses

customUpdateExpression Expression to use in SET clause of UPDATE

customInsertExpression Expression to use in VALUES clause of INSERT.
Defaults to customUpdateExpression

customSelectExpression alone is enough to create a searchable field that
uses a SQL expression to derive its value, which can be used for SQL-
based formatting, including combining values from multiple database
columns into one logical DataSource field. For example, the following
field definition would combine firstName and lastName columns at the
database:

<field name="fullName"

 customSelectExpression="CONCAT(CONCAT(firstName, ' '), lastName)"

/>

Applied in combination, the custom..Expression properties can be used to
create a field that uses SQL expressions to map between a stored SQL
value and the value you want to use in Smart GWT UI components. This
can be used to handle legacy formats for date values, database-specific
variations of boolean storage including ―bit vector‖ columns, and other
use cases. For example, you might store a price in cents, but want to work
in the UI in terms of dollars:

<field name="unitPrice" type="float"

 customSelectExpression="unitPrice / 100"

 customUpdateExpresion="$values.unitPrice * 100" />

Visual Components Smart GWT Quick Start

64 Version 2.3

Before using these properties, take a look at DataSourceField.
sqlStorageStrategy, which encapsulates some common scenarios as a
single setting.

For more information on SQL Templating, see:

 Smart GWT Java Doc:

com.smartgwt.client.docs.serverds.DataSourceField.customSQL

com.smartgwt.client.docs.serverds.OperationBinding.
customCriteriaFields

com.smartgwt.client.docs.serverds.DataSourceField.
customSelectExpression

com.smartgwt.client.docs.serverds.DataSourceField.
sqlStorageStrategy

For a sample of SQL Templating involving a complex, aggregated
query that still supports paging and search, see:

 Smart GWT Enterprise Showcase

smartgwtee/showcase/#sql_dynamic_reporting

Why focus on .ds.xml files?

Having read about operation bindings, declarative security, dynamic
expressions and SQL Templating, you probably now realize that 95% of
common web application use cases can be handled with simple settings in
a .ds.xml file. This short section is a reminder of why this brings
tremendous benefits.

 Declarative

Far more compact than creating a Java class to hold equivalent
logic, and can be read and understood by people who would not be
able to read equivalent Java, such as QA engineers, UI engineers
or product managers with XML and SQL skills.

 Centralized

Security rules and other business rules appear right in the
business object definition, where they are more easily found.

http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/docs/serverds/DataSourceField.html#customSQL
http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/docs/serverds/OperationBinding.html#customCriteriaFields
http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/docs/serverds/OperationBinding.html#customCriteriaFields
http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/docs/serverds/DataSourceField.html#customSelectExpression
http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/docs/serverds/DataSourceField.html#customSelectExpression
http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/docs/serverds/DataSourceField.html#sqlStorageStrategy
http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/docs/serverds/DataSourceField.html#sqlStorageStrategy
http://www.smartclient.com/smartgwtee/showcase/#sql_dynamic_reporting

Smart GWT Quick Start Visual Components

Version 2.3

 65

 Secure

.ds.xml files are evaluated server-side, so all business rules
declared there are securely enforced. By driving client-side
behavior from secure server declarations, you avoid the common
error of implementing a business rule client-side only, and
forgetting to add server enforcement.

Further, the DataSource definition delivered to the client
automatically omits all declaration that only drive server-side
behaviors (such as DMI), so there is no information leakage.

Finally, in sensitive contexts like SQL Templating, automatic
quoting is applied, making it far more difficult to accidentally
create common security flaws like SQL injection attacks.

 Faster development cycle

To test a new functionality in a DataSource .ds.xml file, just reload
the web page—the Smart GWT server framework automatically
notices the modified DataSource. No compilation and deployment
step required.

Custom DataSources

You can create a DataSource that calls existing business logic by simply
using DMI to declare what Java method to call for each operation. This is
a good approach if you have only a few DataSources, or while you are still
learning the basics.

However, Smart GWT allows you to create a custom, reusable DataSource
classes in Java, which can then be used with an unlimited number of
.ds.xml files. Do this when:

 you have several DataSources that all use a similar
persistence approach, and DMI declarations and associated
code would be highly repetitive

 you are using a built-in DataSource such as SQLDataSource,
but you would like to extend it with additional behaviors

In both cases, you use the serverConstructor attribute of the
<DataSource> tag to indicate the Java class you would like to use. Your
Java class should extend the DataSource class that you are using for
persistence, or, if writing your own persistence code, extend
com.isomorphic.datasource.BasicDataSource.

Visual Components Smart GWT Quick Start

66 Version 2.3

Providing responses from a custom DataSource works similarly to
DMI—there are 4 methods on a DataSource, one per DataSource
operation type, each of which receives a DSRequest and returns a
DSResponse. They are executeFetch, executeUpdate, executeAdd and
executeRemove.

If you are extending a built-in DataSource that provides persistence,
you can override one or more of these methods, add your custom
logic, and call the superclass implementation with the Java super
keyword.

If you are implementing your own persistence, you need to provide
an implementation for each of the operations you plan to use. Once
these methods are implemented, convenience methods such as
DataSource.fetchById() become functional automatically. Use
getFieldNames(), getField() and the APIs on the DSField class to
discover the field definitions declared in the .ds.xml file. You can
return data in the DSResponse in exactly the same formats as are
allowed for DMI.

A fifth override point, DataSource.execute(), can be used for common
logic that should apply to all four DataSource operations. The execute()
method is called before operation-specific methods such as
executeFetch() and is responsible for invoking these methods. Here
again, use super to allow normal execution of operation types you don‘t
wish to centrally customize.

You can also add custom attributes to your DataSource .ds.xml file.
The APIs DataSource.getProperty() and DSField.getProperty()
allow you to detect added attributes at the DataSource and
DataSourceField level respectively. Use these attributes to configure
your persistence behavior (for example, the URL of a remove service
to contact) or use them to control additional features you add to the
built-in persistent DataSources.

For more information on creating custom DataSources, see:

 Smart GWT Java Doc:

com.smartgwt.client.docs.WriteCustomDataSource

http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/docs/WriteCustomDataSource.html

Smart GWT Quick Start Visual Components

Version 2.3

 67

9. Extending Smart GWT

Smart GWT provides a rich set of components and services to accelerate
your development, but from time to time, you may want to extend outside
the box of prefabricated features. For example, you might need a new user
interface control, or special styling of an existing control, or a customized
data-flow interaction. With this in mind, we have worked hard to make
Smart GWT as open and extensible as possible.

An earlier chapter, Smart GWT Server Framework, outlined the
approaches to extending Smart GWT on the server. This chapter outlines
the customizations and extensions that you can make on the client.

New Components

If you need to extend beyond the customizable properties of the standard
Smart GWT component set, you can create entirely new components.

New components are usually based on one of the following foundation
classes: Canvas, StatefulCanvas, Layout, HLayout, VLayout, HStack, or
VStack.

The three most common approaches to build a new Smart GWT visual
component are:

1. Create a subclass of any built-in layout class that generates and
manages a set of other components.

Many of Smart GWT built-in components are built in this fashion, for
example, the Window class is a subclass of Layout that automatically
creates header, footer and body components.

Use layout subclasses to build high-level compound components and
user interface patterns. For example, you could define a new class that
combines a summary grid, toolbar, and detail area into a single
reusable module.

Visual Components Smart GWT Quick Start

68 Version 2.3

2. Create a Canvas subclass that generates and configures a set of
other foundation components.

Use this approach if your custom component does not resemble any of
the built-in layout classes (or any combination of nested layouts). The
Slider control included with Smart GWT is a good example of this

pattern: a Slider is created out of a Canvas parent, StretchImg track
element, and draggable Img thumb element. By reusing foundation
components, you avoid browser inconsistencies in HTML and CSS
rendering, event handling, and other areas.

3. Create a Canvas subclass that contains your own HTML and CSS
template code.

This approach provides the most flexibility to create components
using any feature of HTML and CSS and is also the best approach for
embedding third-party Ajax widgets within Smart GWT containers.
However, it also requires that you test, optimize, and maintain your
code on all supported web browsers. Whenever possible, you should
use Smart GWT foundation components instead to avoid browser
inconsistencies.

Before you begin development of an entirely new component, try the
Smart GWT Developer Forums at forums.smartclient.com. Other
developers may have created similar components, or Isomorphic
Software may have already scheduled, specified, or even
implemented the functionality you need.

You can also contact Isomorphic regarding Feature Sponsorship to have
the component added to the product along with documentation and
running samples, so you won't need to build and maintain the code
yourself. For Feature Sponsorship, contact Isomorphic at
services@isomorphic.com.

New Form Controls

New form controls are frequently implemented as custom ―pickers‖ that
the user can pop up from a picker icon next to a form or grid value.

To create a new form control:

1. Create a subclass of TextItem or StaticTextItem.

2. Add a picker icon to instances of your control (see
FormItem.addIcon()).

3. Build a custom picker based on any standard or custom Smart
GWT components and services (see above). The Window
component is a common choice.

http://forums.smartclient.com/
mailto:services@isomorphic.com

Smart GWT Quick Start Visual Components

Version 2.3

 69

4. Respond to end-user click events on that icon to show your
picker (see FormItem.addIconClickHander()) to show your
picker.

5. Update the value of the form control based on user interaction
with the picker (see FormItem.setValue()).

6. Hide the picker when appropriate.

Switching Theme

Themes allow you to change the overall look-and-feel of your Smart GWT
user interface. You can ―re-skin‖ an application to match corporate
branding, to adhere to usability guidelines, or even to personalize look &
feel to individual user preferences.

Smart GWT includes several default themes. To get a visual preview of the
default themes, use the online Showcase, which includes a control to
dynamically switch themes.

In your own project, you switch to a different theme by inheriting a GWT
module in your .gwt.xml file. The default themes are found in the

smartgwt.jar file included in the SDK under the package
com.smartclient.theme. An IDE such as Eclipse will allow you to

browse smartgwt.jar to find available themes. To switch themes, add
an <inherits> tag with the fully qualified Java package name of the

.gwt.xml file for the theme:

<inherits name="com.smartclient.theme.graphite.Graphite"/>

Note: Smart GWT Pro/EE starter projects include .gwt.xml files that
inherit a single GWT module in order to include all Smart GWT
components in the project. For example, in the evaluation SDK, you‘ll see:

<inherits name="com.smartgwtee.SmartGwtEE"/>

This <inherits> tag implicitly includes a theme for the Smart GWT

components. Before adding a new <inherits> tag for a different theme,

add NoTheme to the end of the name attribute, like so:

<inherits name="com.smartgwtee.SmartGwtEENoTheme"/>

This revised <inherits> tag includes just the Smart GWT components,
with no theme.

If you forget to add NoTheme, you will be loading two themes
and the result will be a strange combination of both themes. If you
see strange visual anomalies or theme-related files being
downloaded from two different images directories, check your

<inherits> tags.

Visual Components Smart GWT Quick Start

70 Version 2.3

Customizing Themes

In the previous section we looked at how to find and browse the default
themes. In each theme you will find a public folder with 3 sets of
resources:

Resource Contains

skin_styles.css a collection of CSS styles that are applied to
parts of visual components in various states
(e.g. cellSelectedOver for a selected cell in
a grid with mouse-over highlighting)

images a collection of small images that are used as
parts of visual components when CSS
styling is not sufficient (e.g.
TreeGrid/folder_closed.gif)

load_skin.js high-level programmatic styling (e.g.
listGrid.alternateRecordStyles) and sizes
for fixed-size elements (e.g.
window.edgeSize)

The best way to create a custom skin is to copy an existing skin that most
closely matches your intended look and feel and modify it. For example,
let‘s say you wanted to customize the built-in ―Enterprise‖ skin and call
the resulting skin ―BrushedMetal.‖ The procedure is as follows:

1. Use any .zip-compatible tool to unzip the .jar file and copy the
entire contents of the ―Enterprise‖ skin into a new folder called
―BrushedMetal.‖

2. Edit the load_skin.js file. Find the line near the top of the
file that reads:

isc.Page.setSkinDir("[ISOMORPHIC]/skins/Enterprise/")

and change it to:

isc.Page.setSkinDir("[ISOMORPHIC]/skins/BrushedMetal/")

3. Rename Enterprise.gwt.xml to BrushedMetal.gwt.xml and
change the path sc/skins/Enterprise to sc/skins/BrushedMetal
within this file.

4. Now you‘re ready to customize the new skin. You can do so by
modifying any of the files listed in the preceding table inside
your new skin directory. When modifying your custom skin, best
practice is to group all changes in skin_styles.css and
load_skin.js near the end of the file, so that you can easily
apply your customizations to future, improved versions of the
original skin.

Smart GWT Quick Start Visual Components

Version 2.3

 71

5. Create a .jar for the skin. Eliminate the outer directory structure
com/smartclient/theme and replace with

com/mycompany/theme. Use any .zip-compatible tool to
create the .jar file, and add it to your Smart GWT project.

6. Switch to your new skin by changing the <inherits> tags in

your .gwt.xml file, as covered in the previous section.

Packaging your new skin as a GWT module is convenient for
sharing it across projects, but not actually required. Another
approach is to take the unzipped skin files and place them under
the war directory of your project, then add a <script src=> tag to
your .html bootstrap file to load load_skin.js. In this case the
setSkinDir() call from step #2 should use the relative path to the
unzipped files – for example, if you placed the skin in
war/skins/BrushedMetal then the call should be
isc.Page.setSkinDir(“skins/BrushedMetal”). This is a good
approach to use while making a series of changes to the skin.

Visual Components Smart GWT Quick Start

72 Version 2.3

10. Tips

Beginner Tips

Use the Developer Console.

The Developer Console contains several extremely useful diagnostic and
runtime inspection tools and is where Smart GWT logs errors and
warnings. You should always have the Developer Console open while
developing with Smart GWT.

Architecture Tips

Don’t mix Smart GWT and plain GWT components unless
forced to.

Wherever possible, build your UI entirely out of Smart GWT widgets
rather than using a mixture of plain GWT (com.google.gwt) widgets and
Smart GWT widgets.

This is required because there are no interoperability standards that allow
two Ajax component systems (include core GWT widgets) to coordinate
on management of tab order and keyboard focus, layering and modality,
pixel-perfect layout, and accessibility.

Smart GWT does have limited interoperability support that allows a
Smart GWT widget to be added to a GWT container and allows a GWT
widget to be added to a Smart GWT container, and it‘s appropriate to use
this for:

 incremental migration to Smart GWT, such as introducing
singular, sophisticated Smart GWT components like the
Calendar or CubeGrid to an existing GWT application

 using sophisticated third-party GWT widgets within Smart
GWT, where Smart GWT doesn't have corresponding built-
in functionality

Smart GWT Quick Start Visual Components

Version 2.3

 73

However, you should never place GWT widgets within a Smart GWT
container that is in turn within a GWT container. Until interoperability
standards emerge, intermixing widgets in this way is considered
unsupported usage, and any issue reports resulting from such usage will
not be considered bugs.

Defer creation and drawing of components until they are
shown to the end user.

Creating and drawing all of your components on the onModuleLoad()
function will lead to poor start time for larger applications. Instead, create
and draw only the components required for the initial view.

Defer creation of components by waiting until the user navigates to the
view. For example, to create the components which appear in a tab only
when the user selects the tab, use the TabSelected event in conjunction

with Tab.setPane().

To reclaim all memory for a component that you no longer need, call
destroy() on it, then allow it to be garbage collected by removing all
references to it as usual. Note that destroy() is permanent, and once

you have called destroy() on a component, calling any other API is
expected to fail. Destroying a parent component automatically destroys
all children.

To reclaim some memory from a component that you wish to reuse later,
call clear(). This removes all HTML rendered by the component and
its children. You can call draw() to recreate the component‘s HTML later.

HTML and CSS Tips

Use Smart GWT components and layouts instead of HTML and
CSS, whenever possible.

The goal is to avoid browser-specific HTML and CSS code. The
implementations of HTML and CSS vary widely across modern web
browsers, even across different versions of the same browser. Smart GWT
components buffer your code from these changes, so you do not need to
test continuously on all supported browsers.

Avoid FRAME and IFRAME elements whenever possible.

Frames essentially embed another instance of the web browser inside the
current web page. That instance behaves more like an independent
browser window than an integrated page component. Smart GWT‘s
dynamic components and background communication system allow you
to perform fully integrated partial-page updates, eliminating the need for
frames in most cases. If you must use frames, you should explicitly clear
them with frame.document.write("") when the parent page is unloaded,
to avoid memory leaks in Internet Explorer.

Visual Components Smart GWT Quick Start

74 Version 2.3

Manipulate Smart GWT components only through their
published APIs.

Smart GWT uses HTML and CSS elements as the ―pixels‖ for rendering a
complex user interface in the browser. It is technically possible to access
these elements directly from the browser DOM (Document Object Model).
However, these structures vary by browser type, version, and mode, and
they are regularly improved and optimized in new releases of Smart GWT.
The only stable, supported way to manipulate a Smart GWT component is
through its published interfaces.

Develop and deploy in browser compatibility mode, not
“standards” mode.

Smart GWT components automatically detect and adapt to the browser
mode (as determined by DOCTYPE), providing consistent layout and
rendering behaviors in both standards/strict and compatibility/quirks
modes. However, the interpretation of ―standards mode‖ varies across
browsers, and changes across different versions of the same browser. If
you develop in “standards mode,” the behavior of your application may
change as users perform regular updates to their OS or browser. In
many common browsers, ―Standards mode‖ is not, as the name implies, a
consistent standards-compliant mode.

Smart GWT Quick Start Visual Components

Version 2.3

 75

11. Evaluating Smart GWT

This chapter offers advice for the most effective approaches to use when
evaluating Smart GWT for use in your project or product.

Which Edition to Evaluate

Smart GWT comes in several editions, including a free edition under the
Lesser GNU Public License (LGPL).

We always recommend using the commercial edition for evaluation. The
reason is simply that applications built on the commercial edition can be
easily converted to the LGPL version without wasted effort, but the
reverse is not true.

For example, the commercial edition of Smart GWT includes a sample
project with a pre-configured Hypersonic SQL Database, which you can
use to evaluate all of the capabilities of Smart GWT‘s UI components
without ever writing a line of server code, using simple visual tools to
create and modify SQL tables as needed.

If you ultimately decide not to purchase a commercial license, Smart
GWT‘s DataSource architecture allows for plug-replacement of
DataSources without affecting any UI code or client-side business logic.
So, you can simply replace the SQL DataSources you used during
evaluation with an alternative implementation, and there is no wasted
work.

Similarly, if part of your evaluation involves connecting to pre-existing
Java business logic, Smart GWT Direct Method Invocation (DMI) allows
you to route DataSource requests to Java methods by simply declaring the
target Java class and method in an XML file. To later migrate to Smart
GWT LGPL, just replace your DMI declarations with your own system for
serializing and de-serializing requests and routing them to Java methods.

Visual Components Smart GWT Quick Start

76 Version 2.3

 If you wrote any server-side pre- or post-processing logic to adapt Smart
GWT‘s requests and responses to your business logic methods, this will
continue to be usable if you decide to write and maintain a replacement
for Smart GWT DMI. No code is thrown away and none of your UI code
needs to change.

In contrast, if you were to evaluate using the LGPL edition and implement
REST-based integration, upon purchasing a license you will immediately
want to switch to the more powerful, pre-built server integration instead,
which also provides access to all server-based features. In this scenario
you will have wasted time building a REST connector during evaluation
and given yourself a false perception of the learning curve and effort
involved in using Smart GWT.

Evaluating the commercial edition gives you a more effective, more
accurate evaluation process and avoids wasted effort.

Evaluating Performance

Smart GWT is the highest performance platform available for web
applications, and you can easily confirm this during your evaluation.

However, be careful to measure correctly: much of the performance
advice you may encounter applies to web sites, is focused on reducing
initial load time, and can actually drastically reduce responsiveness and
scalability if applied to a web application.

Unlike many web sites, web applications are visited repeatedly by the
same users on a frequent basis, and users will spend significant time
actually using the application.

To correctly assess the performance of a web application, what should be
measured is performance when completing a typical series of tasks.

For example, in many different types of applications a user will search for
a specific record, view the details of that record, modify that record or
related data, and repeat this pattern many times within a given session.

To assess performance in this scenario, what should be measured is
requests for dynamically generated responses - for example, results from
a database query. Requests for static files, such as images and CSS style
sheets, can be ignored since these resources are cacheable—these requests
will not recur as the user runs through the task multiple times, and will
not recur the next time the user visits the application.

Smart GWT Quick Start Visual Components

Version 2.3

 77

Focusing on dynamic responses allows you to measure:

 responsiveness: typically a dynamic response means the
user is blocked, waiting for the application to load data. It‘s
key to measure and minimize these responses because these
are the responses users are actually waiting for in real usage.

 scalability: dynamic responses represent trips to a data
store and processing by the application server—unlike
requests for cacheable resources, which occur only once ever
per user, dynamically generated responses dictate how many
concurrent users the application can support.

Using network monitoring tools such as Firebug (getfirebug.com) or
Fiddler (fiddlertool.com), you can monitor the number of requests for
dynamic data involved in completing this task multiple times.

 Don’t use the “reload” button during performance testing.
Instead, launch the application from a bookmark. This simulates a
user visiting the page from an external link or bookmark. In
contrast, reloading the page forces the browser to send extra
requests for cacheable resources which would not occur for a
normal user.

With the correct performance testing approach in hand, you are ready to
correctly assess the performance of Smart GWT. If you have followed
Smart GWT best practices, you application will show a drastic reduction
in dynamic requests due to features like:

 Adaptive Filtering and Sort: eliminates the most expensive
category of search and sort operations by adaptively
performing search and sort operations in-browser whenever
possible.

Adaptive Filter Example

 Adaptive Sort Example

 Central Write-Through Caching: smaller datasets can be
centrally cached in-browser, even if they are modifiable

DataSource.cacheAllData documentation

 Least Recently Used (LRU) Caching: automatic re-use of
recently fetched results in picklists and other contexts.

http://www.getfirebug.com/
http://www.fiddlertool.com/
http://www.smartclient.com/index.jsp#adaptiveFilter
http://www.smartclient.com/index.jsp#adaptiveSort
http://www.smartclient.com/smartgwtee/javadoc/com/smartgwt/client/data/DataSource.html#setCacheAllData%28java.lang.Boolean%29

Visual Components Smart GWT Quick Start

78 Version 2.3

Evaluating Interactive Performance

When evaluating interactive performance:

 Use GWT Compiled mode, not Hosted Mode

Hosted mode can be slower than compiled mode by a
difference of 10x or more.

 Disable Firebug or any similar third-party debugger or
profiler

These tools are great for debugging, but do degrade
performance and can cause false memory leaks. End users
won't have these tools enabled when they visit your
application or site, so to assess real-world performance, turn
these tools off.

 Close the Developer Console, revert log settings, and ensure
Track RPCs is off

Both refreshing the live Developer Console and storing large
amounts of diagnostic output have a performance impact.
To see the application as a normal end user, revert log
settings to the default (only warnings are shown), disable
―Track RPCs‖ in the RPC Tab, and close the Developer
Console.

 Use normal browser cache settings

Developers often set browsers to non-default cache settings,
causing repeated requests that can degrade interactivity.
End users won't have these special settings, so to assess real-
world performance, revert to browser defaults.

For more performance testing tips and troubleshooting advice,
see:

 The SmartGWT FAQ at:

forums.smartclient.com

http://forums.smartclient.com/showthread.php?t=8159#aSlow

Smart GWT Quick Start Visual Components

Version 2.3

 79

Evaluating Editions and Pricing

If you are a professionally employed developer, the cost of entry level
commercial licenses is recouped if your team is able to leverage just one
feature.

Consider, for example, the long term cost of recreating any single feature
from the Pro product:

 time spent designing & developing your own version of the
feature

 time spent testing & debugging your own version of the
feature

 time spent addressing bugs in the feature after deployment

 time spent maintaining the code over time - supporting new
browsers, or adding additional, related features that appear
in the Pro product, that would have been effortless upgrades

If you work on a team, these costs may be multiplied many times as
different developers repeatedly encounter situations where a feature from
Pro would have saved effort.

Furthermore, looked at comprehensively, the cost of building and
delivering an application includes time spent defining and designing the
application, time spent developing, debugging and deploying the
application, cost of the hardware the application runs on, licenses to other
software, end user training, and many other costs.

The price of the most advanced Smart GWT technology is a tiny part of
the overall cost of developing an application, and can deliver huge savings
in all of these areas. For this reason, it makes sense to work with the most
advanced Smart GWT technology available.

If you are a developer and you recognize that the features in Pro could
save you time, you may find that an argument firmly based on cost
savings and ROI (Return On Investment) will enable you to work with
cutting edge technology and save you from wasting time ―re-inventing the
wheel.‖

Visual Components Smart GWT Quick Start

80 Version 2.3

A note on supporting Open Source

The free, open source (LGPL) version of Smart GWT exists because of the
commercial version of the product. The free and commercial parts of the
product are split in such a way that further development of the
commercial version necessarily involves substantial upgrades to the open
source version, and historically, new releases have contained as least as
many new features in the free product as in the commercial version.

Further development of the commercial version also allows commercial
features to migrate to the free, open source version over time.

As with any open source project, patches and contributions are always
welcome. However, as a professionally employed developer, the best way
to support the free product is to fuel further innovation by purchasing
licenses, support, and other services.

Smart GWT Quick Start Visual Components

Version 2.3

 81

Contacts

Isomorphic is deeply committed to the success of our customers. If you
have any questions, comments, or requests, feel free to contact the Smart
GWT product team:

 Web www.smartclient.com

 General info@smartclient.com
 feedback@smartclient.com

Evaluation Support forums.smartclient.com

 Licensing sales@smartclient.com

 Services services@smartclient.com

We welcome your feedback, and thank you for choosing Smart GWT.

End of Guide

http://www.smartclient.com/
mailto:info@smartclient.com
mailto:feedback@smartclient.com
http://forums.smartclient.com/
mailto:sales@smartclient.com
mailto:services@isomorphic.com

	Contents
	How to use this guide
	Why Smart GWT?
	More than Just Widgets – A Complete Architecture
	Eliminates Cross-Browser Testing and Debugging
	Complete Solution
	Open, Flexible Architecture

	1. Overview
	Architecture
	Capabilities and Editions of Smart GWT

	2. Installation
	Starting a New Project
	Adding Smart GWT to an Existing Project
	Server Configuration (optional)

	3. Exploring
	Smart GWT Showcase
	Smart GWT Java Doc
	Smart GWT Developer Console

	4. Visual Components
	Component Documentation & Examples
	Drawing, Hiding, and Showing Components
	Size and Overflow
	Handling Events

	5. Data Binding
	Databound Components
	Fields
	DataSources
	Customized Data Binding
	DataSource Operations
	DataBound Component Operations
	Data Binding Summary

	6. Layout
	Component Layout
	Container Components
	Form Layout

	7. Data Integration
	DataSource Requests
	Smart GWT Server Framework
	DSRequests and DSResponses
	Request and Response Transformation
	Criteria, Paging, Sorting and Caching
	Authentication and Authorization
	Relogin

	8. Smart GWT Server Framework
	DataSource Generation
	Server Request Flow
	Direct Method Invocation
	DMI Parameters
	Adding DMI Business Logic
	Returning Data
	Queuing & Transactions
	Queuing, RESTHandler, and SOAs
	Operation Bindings
	Declarative Security
	Dynamic Expressions (Velocity)
	SQL Templating
	SQL Templating — Adding Fields
	Why focus on .ds.xml files?
	Custom DataSources

	9. Extending Smart GWT
	New Components
	New Form Controls
	Switching Theme
	Customizing Themes

	10. Tips
	Beginner Tips
	Architecture Tips
	HTML and CSS Tips

	11. Evaluating Smart GWT
	Which Edition to Evaluate
	Evaluating Performance
	Evaluating Interactive Performance
	Evaluating Editions and Pricing
	A note on supporting Open Source

	Contacts

